全球气候模式降尺度方法(Downscaling)
- 1 动力降尺度(Dynamic downscaling technique)
- 2 统计降尺度(Statistical downscaling technique)
-
- 2.1 理想预报法(Perfect Prognosis, PP)
- 2.2 模型输出统计法(Model Output Statistics, MOS)
-
- 2.2.1 经验降尺度方法(empirical downscaling methods)
-
- 2.2.1.1 变化因子方法(change factor approaches)
- 方法1:恒定缩放法/增量变化法(Constant scaling, CS/ delta change method))
- 方法2:每日缩放法(Daily Scaling, DS)
- 2.2.1.2 偏差校正方法(bias correction approaches)
- 方法1: (Daily translation, DT)
- 方法2.1:局部强度缩放法(Local intensity scaling, LOCI)-仅用于校正降水
- 方法2.2:局部强度缩放法(Local intensity scaling, LOCI)-用于校正降水和温度
- 方法3:(Daily bias correction, DBC)
- 方法4: (Quantile mapping, QM)
- 2.2.2 基于分位数的日尺度偏差校正方法(Daily bias correction, DBC)
- 2.2.3 偏差校正空间分解BCSD算法(bias-correction spatial disaggregation, BCSD)
- 2.3 随机天气发生器(Stochastic Weather Generator, SWG)
- 3 动力和统计相结合的降尺度方法
- 参考
降尺度:把大尺度、低分辨率的全球气候模式输出的信息转化为小尺度、高分辨率的区域地面气候变化信息的一种方法。
全球气候模式(Global Climate Model, GCM)能很好地预估未来全球气候变化,但目前它输出的空间分辨率(通常为300千米左右)较低,缺少详细的区域气候信息,难以对区域气候做出合理的预测。降尺度(downscale) 可以弥补全球气候模式预测区域气候变化的局限,它可以把全球气候模式提供的大尺度气候信息转化为区域尺度的气候信息(如气温、降水等),从而实现对区域气候预测。
常用的降尺度方法主要包括三种类别:动力降尺度、统计降尺度以及动力和统计相结合的降尺度方法。