全球气候模式降尺度方法总结及其代码实现

文章详细介绍了全球气候模式降尺度的三种主要方法:动力降尺度、统计降尺度及二者结合的方法。动力降尺度基于区域气候模型,而统计降尺度包括理想预报法、模型输出统计法和随机天气发生器,其中模型输出统计法涉及多种偏差校正技术,如恒定缩放法、局部强度缩放法和分位数映射等。这些技术用于将大尺度气候信息转化为小尺度、高分辨率的区域气候变化预测。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

降尺度:把大尺度、低分辨率的全球气候模式输出的信息转化为小尺度、高分辨率的区域地面气候变化信息的一种方法。
在这里插入图片描述

全球气候模式(Global Climate Model, GCM)能很好地预估未来全球气候变化,但目前它输出的空间分辨率(通常为300千米左右)较低,缺少详细的区域气候信息,难以对区域气候做出合理的预测。降尺度(downscale) 可以弥补全球气候模式预测区域气候变化的局限,它可以把全球气候模式提供的大尺度气候信息转化为区域尺度的气候信息(如气温、降水等),从而实现对区域气候预测。
常用的降尺度方法主要包括三种类别:动力降尺度、统计降尺度以及动力和统计相结合的降尺度方法。

1 动力降尺度(Dynamic downscaling technique)

Use of NWAI-WG data   So far, NWAI-WG data have been used on a collaborative basis in publications (see the attached file). The major reasons are the data were not widely distributed. They were only used in our group and our collaborative networks. There were some cases with requests of the data made after people read Liu and Zou's (2012) paper. You have two options for using the data. Option 1: Collaboration with us. In this case, we will help you to describe the downscaling method and contribute to other parts of the paper such as comments/suggestions on the papers, if the fields are within our expertise. Option 2: Use of the data on your own. While option 1 for collaboration with us is welcome, option 2 is also highly encouraged, particularly, when the data are used for these research disciplines, rather than agricultural related. Thanks to Professor Yu who provides us with his group's web site (www.agrivy.com) as a media for distribution of the data.   Acknowledgment for option 1  “We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP5 multi-model dataset. Support of this dataset is provided by the Office of Science, US Department of Energy. Dr. Ian Macadam of the University of New South Wales downloaded the raw GCM monthly data. ”   Acknowledgment for option 2  “We acknowledge the modelling groups, the Program for Climate Model Diagnosis and Intercomparison (PCMDI) and the WCRP’s Working Group on Coupled Modelling (WGCM) for their roles in making available the WCRP CMIP5 multi-model dataset. Support of this dataset is provided by the Office of Science, US Department of Energy. Dr. Ian Macadam of the University of New South Wales downloaded the raw GCM monthly data. Dr. De Li Liu of the NSW Department of Primary Industries used NWAI-WG to downscale downscaled daily data. Also, thanks to AGRIVY (www.agrivy.com) provides us the data for this study.”
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

WW、forever

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值