目录
在AI Native应用中,模型微调是一种重要的技术手段,通过对预训练模型进行再训练,使其能够更好地适应特定的任务和数据集。本文将深入探讨模型微调的原理、方法和应用场景,并提供实际操作的详细步骤和代码示例,帮助读者全面掌握这一关键技术。
一、模型微调的基本概念
1.1 什么是模型微调?
模型微调(Fine-Tuning)是指在预训练模型的基础上,使用特定任务的数据对模型进行再训练。预训练模型通常在大规模通用数据集上进行训练,学习到了丰富的特征表示。通过微调,可以将这些通用特征适应到特定任务中,从而提高模型在特定任务上的性能。
1.2 模型微调的优势
- 节省时间和计算资源:预训练