目录
在人工智能领域,机器学习和深度学习作为核心技术,正在不断推动着科技进步。无论是语音识别、图像处理,还是推荐系统,这两种技术都展现出了强大的能力。然而,很多人对它们的实际区别和适用场景并不十分清楚。在深入探讨之前,我们需要了解的是,这两者虽然有着相似的目标——从数据中提取知识并进行预测,但它们在方法论和实现技术上却存在根本的不同。通过了解这些差异,我们可以更好地选择适合我们需求的技术,并在实际应用中发挥最大的效能。
1. 机器学习概述
机器学习(Machine Learning,ML)是一种通过从数据中学习来进行预测和决策的技术。它主要依赖于算法来发现数据中的模式,并基于这些模式对新数据进行预测。机器学习的算法大致可以分为监督学习、无监督学习和半监督学习等几种类型。
1.1 监督学习
监督学习(Supervised Learningÿ