Pytorch计算模型参数总量和模型计算量

计算这两个值之前要进行模型加载,模型加载的方法见https://blog.csdn.net/confusingbird/article/details/103913915

加载完模型后得到模型model

方法1:pytorch自带方法,计算模型参数总量

 total = sum([param.nelement() for param in model.parameters()])

 print("Number of parameter: %.2fM" % (total/1e6))

方法2:FeatherNet作者提供的一个方法,计算模型参数总量和模型计算量

def count_params(model, input_size=224):
    # param_sum = 0
    with open('models.txt', 'w') as fm:
        fm.write(str(model))

    # 计算模型的计算量
    calc_flops(model, input_size)

    # 计算模型的参数总量
    model_parameters = filter(lambda p: p.requires_grad, model.parameters())
    params = sum([np.prod(p.size()) for p in model_parameters])

    print('The network has {} params.'.format(params))


# 计算模型的计算量
def calc_flops(model, i
评论 19
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值