大家好,我是龙鹏。这次继续给大家带来人脸图像相关的分享。
这次我们的分享是人脸的性别和脸型 分类 问题, 我们主要会从两个方面给大家进行介绍:
1)我们会对图像分类这一基本问题给大家做一个比较完整的介绍。 图像的分类实际上它包含很多的内容, 包括跨物种的图像分类、细 粒 度的图像分类、 实例的图像分类以及多标签图像分类这几个领域。
2)我们对人脸分类相关的问题进行一个介绍, 主要包含两个类:人脸的性别和人脸的脸型。
下面开始我们第一部分的分享:图像分类
图像分类是计算机视觉领域一个可以说是最基础的任务。
那什么是图像分类? 实际上它就是将不同的图像划分到不同的类别, 它的目标就是实现最小的分类误差。 图像 分类,它实际上包含了非常多的内容。
图1
我们先看图1这张图,这是计算机视觉领域里面非常有名的一个数据集,叫做cifar10。 cifar10 ,顾名思义它就包含了十类, 包含车 , 飞机 ,鸟, 猫等等, 它的每一类都是一个生物意义上的物种, 或者说交通领域里面的一个物种,它是一个跨物种分类的问题。
图2
我们 再看图2, 这是一个细 粒 度的图像分类问题。 什么意思呢?就是两只鸟,这两只鸟都是属于啄木鸟 这 一个 类别 。 所以说与前面我们第一个分类 有 不同的是,它是在同一个类别内部对子类再进行分类, 也就是它是一个更精细的分类。
图3
我们再看第三个分 类 内容,也就是图3,这是一个 实例 识别, 也就是人脸识别问题。 与前面两个分类任务不同在于这个任务不仅需要对大类 子 类进行分类, 它还需要能够精确地识别这是哪一个实例, 所以它的分类的层次会更精细。
最后还有一个多标签分类问题。 所谓多标签分类问题就是一张图片,它的标签不是唯一的。 前面我们所说的跨物种分类、细 粒 度分类以及 实例 识别, 这三 个 的标签都是唯一的,每一张图片都是有一个唯一的标签。 但实际上在我们现实生活中, 一张图片他有可能有多个标签,这是一个多 标签 分类的问题。
以上就是图像分类相关的任务。
大家可以看到图像分类实际上包含了非常丰富的内容, 没有我们想象中那么简单。
下面我们针对人脸里面的图像分类任务给大家做个介绍;
首先,我们介绍 性别 。
所谓性别就是男女的性别。 男女性别的分类,它可以用于人机交互一些应用。 基于图像的男女性别的识别是一个比较简单的问题。 它主要包含两个思路,也就是传统方法跟深度学习方法。
传统方法的思路就是利用人脸的纹理特征, 主要包含 HoG 等等一些特征, 然后再加上一些 鲁棒 的分类器。
基于CNN 的方法也就是深度学习的方法,那就是通过海 量 的数据来自动学习它自己特征。
性别识别虽然是个比较简单的问题,但是它也有它的难点。 它的难点主要包含两个方面:中性 脸 的问题和 年龄 问题。
a.中性脸问题 :我们看上面这张图片,这张图片实际上是一张偏中性的脸, 也就是说它既有男性 脸 的一些特征,也有女性 脸 的特征, 它是处在一个比较中性的位置。很多的时候, 当我们人类面对一些中性 脸 , 我们都无法正常 地 识别它到底是男性还是女性。
b.年龄问题 :人在婴儿的时候,我们很难通过一张人脸去识别。 人在很小的时候,比如三四岁的时候, 这样我们也是难以仅仅通过人脸的图像来识别它的性别。 这个时候往往需要一些辅助的特征。 在实际的运用过程中, 人脸的性别的分类往往不仅仅是通过人脸区域来进行识别, 我们会经常使用到发型等等一些因素。
其次, 脸 型分类 内容。
人类的脸型包含了各种各样, 主要有鹅蛋脸,猫脸, 狐脸, 正方形 脸, 长方形脸等等。 像猫脸 、狐脸 这样的一些脸型, 就是在当下为主流的审美所认可的一些高颜值的脸型, 也就是我们常说的网红脸。 而 像正方形 脸, 长方形脸, 这样的一些 脸型 往往是目前为主流审美观所不容的一些低 颜值 类 的 脸型。
人的脸型定义其实非常简单, 我们只要看人脸的一些轮廓点的距离啊等等 , 就可以唯一的判断人脸的脸型。
人脸 脸 型它可以使用在哪个方面 呢? 主要是用于化妆等推荐,我们看这样的一张图:
这是一个不同脸型佩戴不同眼镜的图。 在我们平时去眼镜 店 那配眼镜的时候, 一般眼镜 师 都会给我们推荐适合我们脸型的一个眼镜。 比如说有人的脸是非常大的一张脸, 那他就比较适合配一个 镜 面更宽更大的眼镜, 这样可以适当的去遮挡它这样 的 缺陷。
人 脸脸型的方法与前面人脸性别的方法也是类似的, 它也包含两个思路:
1)传统的方法: 使用 ASM 特征 +分类器 。 ASM 特征就是我们前面所说的人脸关键点的关键点位置的串联。 我们可以看到,其实利用了人脸的外轮廓, 我们就能完全去定义人脸的脸型。 所以 ASM 特征是一个非常适合做人脸 脸型 分类的特征。
2) CNN 的方法 。 CNN 方法就是通过海量的数据去自动的学习。 我们可以猜想到 CNN 的方法实际上也应该会学习到人脸的轮廓这样的一些关键点特征。 人的脸型,它主要的难题就是 类别 重叠的问题, 因为人脸的脸型它不同于 人脸 的性别, 人 脸 的性别男女性别,这两类是完全能够区分开的, 除去一些中性 脸 ,它 的 分类界限是非常的清晰的。 但是人类脸型的分类界面相对来说会更加模糊一些, 所以它会面临一些类别重叠的问题和一些模糊性的问题。
以上就是与人脸分类有关的两个 图像 任务。 实际上与人脸分类有关的任务应该还有人脸的表情。 因为人类的表情是一个更加复杂的问题, 所以我们后面会有一个专门的 小节 来介绍人脸表情。
免费领取技术大咖分享课,加蜂口V信: fengkou-IT
感谢您的阅读,更多精彩请持续关注蜂口微信小程序!
来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/31553577/viewspace-2215356/,如需转载,请注明出处,否则将追究法律责任。
转载于:http://blog.itpub.net/31553577/viewspace-2215356/