这篇文章主要介绍Dollar在2010年发表在BMVC上的一篇文章《TheFastest Pdestrian Detector in the West》。
上次,我们介绍了积分通道特征的基本方法。虽然相对于传统的HOG特征在性能和速度上面都有了一定的提升。但是,这种方法需要多次缩放图像、并且需要计算每一次缩放后的提分通道特征,这个过程需要消耗很多时间。因此,Dollar在2010提出了对这个方法的改进算法,这样相对于原始方法有了一定的提升,基本达到了实时的效果。(5fps左右)
该篇文章通过实验发现,相邻的尺度的积分通道特征之间存在一定的相似性,可以用邻近尺度的特征计算出来。文章正是基于这一思想,每个Octive内可以只计算其中一个尺度的通道特征,其他尺度的通道特征通过该尺度的特征近似计算得到。
下面,我们简要的介绍一下这篇文章:
一、近似的多尺度直方图
a)上采样的梯度直方图
假原始图像,表示上采样的图像,则,其在x方向和y方向的导数分别为为,。则我们可以理解向上采样图像的梯度变化率是原始图像的,则。那么