积分通道特征(二)

本文介绍了Dollar在2010年提出的积分通道特征改进算法,通过利用相邻尺度特征的相似性,减少计算量,实现行人检测的实时性能(约5fps)。该方法在保持性能的同时,通过近似多尺度直方图和特征,降低了图像缩放和通道计算的次数,提高了检测速度,相比原始方法快了5-10倍。
摘要由CSDN通过智能技术生成

    这篇文章主要介绍Dollar在2010年发表在BMVC上的一篇文章《TheFastest Pdestrian Detector in the West》。

    上次,我们介绍了积分通道特征的基本方法。虽然相对于传统的HOG特征在性能和速度上面都有了一定的提升。但是,这种方法需要多次缩放图像、并且需要计算每一次缩放后的提分通道特征,这个过程需要消耗很多时间。因此,Dollar在2010提出了对这个方法的改进算法,这样相对于原始方法有了一定的提升,基本达到了实时的效果。(5fps左右)

    该篇文章通过实验发现,相邻的尺度的积分通道特征之间存在一定的相似性,可以用邻近尺度的特征计算出来。文章正是基于这一思想,每个Octive内可以只计算其中一个尺度的通道特征,其他尺度的通道特征通过该尺度的特征近似计算得到。

    下面,我们简要的介绍一下这篇文章:

一、近似的多尺度直方图

    a)上采样的梯度直方图

    假原始图像表示上采样的图像,则,其在x方向和y方向的导数分别为为。则我们可以理解向上采样图像的梯度变化率是原始图像的,则。那么

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值