pandas中的 fillna使用(pandas.DataFrame.fillna)

本文详细介绍了Pandas库中fillna函数如何处理缺失值,包括用0替换NaN,向前向后填充,按列替换特定值,限制替换次数,以及DataFrame间的替换操作。通过实例演示了各种方法的使用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

api参考:

fillna: 使用指定的方法填充 NA/NaN 值。

>>> df = pd.DataFrame([[np.nan, 2, np.nan, 0],
                   [3, 4, np.nan, 1],
                   [np.nan, np.nan, np.nan, 5],
                   [np.nan, 3, np.nan, 4]],
                  columns=list("ABCD"))
>>> df
     A    B   C  D
0  NaN  2.0 NaN  0
1  3.0  4.0 NaN  1
2  NaN  NaN NaN  5
3  NaN  3.0 NaN  4

 1、用 0 替换所有 NaN 元素。

>>> df.fillna(0)
    A   B   C   D
0   0.0 2.0 0.0 0
1   3.0 4.0 0.0 1
2   0.0 0.0 0.0 5
3   0.0 3.0 0.0 4

2、我们还可以向前或向后传播非空值。

>>> df.fillna(method="ffill")
    A   B   C   D
0   NaN 2.0 NaN 0
1   3.0 4.0 NaN 1
2   3.0 4.0 NaN 5
3   3.0 3.0 NaN 4

3、将“A”、“B”、“C”和“D”列中的所有 NaN 元素分别替换为 0、1、2 和 3。

>>> values = {"A": 0, "B": 1, "C": 2, "D": 3}
>>> df.fillna(value=values)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 2.0 1
2   0.0 1.0 2.0 5
3   0.0 3.0 2.0 4

4、只替换第一个 NaN 元素。

>>> df.fillna(value=values, limit=1)
    A   B   C   D
0   0.0 2.0 2.0 0
1   3.0 4.0 NaN 1
2   NaN 1.0 NaN 5
3   NaN 3.0 NaN 4

5、使用 DataFrame 填充时,替换沿相同的列名和相同的索引发生

>>> df2 = pd.DataFrame(np.zeros((4, 4)), columns=list("ABCE"))
>>> df.fillna(df2)
    A   B   C   D
0   0.0 2.0 0.0 0
1   3.0 4.0 0.0 1
2   0.0 0.0 0.0 5
3   0.0 3.0 0.0 4

6、inplace 如果为 True,则就地填充。默认为 False

# 第一种情况
print df.fillna("missing", inplace=False)
         A        B        C  D
0  missing        2  missing  0
1        3        4  missing  1
2  missing  missing  missing  5
3  missing        3  missing  4


# 第二种情况
df.fillna("missing", inplace=False)
print df
     A    B   C  D
0  NaN  2.0 NaN  0
1  3.0  4.0 NaN  1
2  NaN  NaN NaN  5
3  NaN  3.0 NaN  4


# 第三种情况
print df.fillna("missing", inplace=True)
None


# 第四种情况
df.fillna("missing", inplace=True)
print df
         A        B        C  D
0  missing        2  missing  0
1        3        4  missing  1
2  missing  missing  missing  5
3  missing        3  missing  4

参考官方文档。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

种麦南山下

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值