前缀和与差分

本文用于记录个人算法竞赛学习,仅供参考

目录

一.前缀和是什么

二.一维前缀和

 三.二维前缀和

四.一维差分

五.二维差分


一.前缀和是什么

给定一个数组A:a1、a2、a3、a4……an

会有前缀和   S:s1、s2、s3、s4……sn,其中si = a1 + a2 + a3 + …… + ai

一般前缀和数组下标从1开始,将s[0] = 0,这样是为了处理边界,假如s[1,10] = s[10] - s[0] = s[10](求区间和)

二.一维前缀和

1.S:  s[i] = s[i - 1] + a[i] (求前缀和的递推公式)

2.作用:可以快速查找求得某一区间的区间和-- s[ L,R ]  = s[R] - s[L - 1]

 三.二维前缀和

 1.求前缀和: 即左上角(0,0)到(i,j) 的和

公式: s[ i ][ j ] = s[ i ][ j - 1] + s[ i - 1 ][ j ] - s[ i - 1 ][ j - 1 ] + a[ i ][ j ]

 2.求区间和:即左上角[ x1, y1 ] 到 右下角[ x2, y2 ] 的区间和

公式: s[ x1, y1 ][ x2, y2 ] = s[ x2 ][ y2 ] - s[ x2 ][ y1 - 1 ] - s[ x1 - 1 ][ y2 ] + s[ x1 - 1 ][  y1 - 1 ]

四.一维差分

1.给定一个数组A:a1、a2、a3、a4……an

会有差分数组B:b1、b2、b3、b4……bn,其中bn = an - a(n-1)

一般差分数组下标从1开始。

2.差分数组的前缀和即为数组A本身

利用  差分数组的前缀和即为数组A本身  这一性质可以快速   给某一区间都加上同一个值

3.给某一区间都加上同一个值

给A[ l , r ]区间中每一个数都加上c,正常思维是遍历一遍区间并加上c,时间复杂度是O(n)

利用 差分数组的前缀和即为数组A本身 这一性质可以使时间复杂度降低到O(1)

 会有公式:b[ l ] += c; b[ r + 1 ] -= c

模板:

vector<int> b;

void Add(int l, int r, int c)
{
	b[l] += c;
	if (r + 1 < b.size())
		b[r + 1] -= c;
}

4.构造B差分数组

正常构造差分数组是利用公式:bn = an - a(n - 1) 遍历一遍来构造,这样就需要多写一个构造操作;

我们也可以利用上面的Add函数来构造差分数组,进而统一了差分操作:

我们可以假设A数组原来是全为0,只不过是进行了Add的区间操作给每个区间赋值,即

a1 是 [1,1]上加上a1,通过Add即有b[1] += a1, b[1+1] -= a1;

an 是 [n,n] 上加上an, 通过Add即有b[n] += an, b[n + 1] -= an(前提是有b[n + 1])

这样,差分的前缀和数组就是A数组。

五.二维差分

1.二维差分数组 给其中一个子矩阵加上一个c

给定左上角(x1, y1) 和 右下角(x2, y2)的子矩阵中所有元素都加上c,由差分性质有:

b[x1][y1] += c;  b[x1][y2 + 1] -= c;  b[x2 + 1][y1] -= c;  b[x2 + 1][y2 + 1] += c; 

模板:

vector<vector<int>> b;

void Add(int x1, int y1, int x2, int y2, int c)
{
	b[x1][y1] += c;
	if (x2 + 1 < b.size())
		b[x2 + 1][y1] -= c;
	if (y2 + 1 < b[0].size())
		b[x1][y2 + 1] -= c;
	if (x2 + 1 < b.size() && y2 + 1 < b[0].size())
		b[x2 + 1][y2 + 1] += c;
}

2.构造二维差分数组

与一维差分数组相似,等价于A数组起始全为0,在[i,j] 到 [i,j] 加上an,可以用Add进行构造。

3.二维差分数组求前缀和

有:s[ i ][ j ] = b[ i ][ j ] + b[i - 1][j] + b[i][j - 1] - b[i - 1][j - 1]

  • 23
    点赞
  • 26
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
前缀和和分是一类常用的算法,它们常常被用来优化一些区间操作的问题,如求区间和、区间最大值/最小值等等。下面我们将分别介绍前缀和和分的定义、用法和常见问题。 ## 前缀前缀和,顾名思义,就是把前面所有数的和都求出来,用一个数组存起来,以便之后的查询。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $s_i = \sum_{j=1}^{i}a_j$,则 $s$ 称为序列 $a$ 的前缀和数组。 ### 用法 前缀和的主要作用是用 $O(1)$ 的时间复杂度求出一个区间 $[l,r]$ 的和,即 $s_r - s_{l-1}$。这是因为 $s_r$ 存储了序列从 $1$ 到 $r$ 的和,而 $s_{l-1}$ 存储了序列从 $1$ 到 $l-1$ 的和,因此区间 $[l,r]$ 的和可以通过两个前缀和相减计算得出。 前缀和的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出前缀和数组。但是,如果有多个查询需要求区间和,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用前缀和求区间和的代码实现: ```cpp vector<int> a; // 原序列 vector<int> s(a.size() + 1); // 前缀和数组 // 计算前缀和 for (int i = 1; i <= a.size(); i++) { s[i] = s[i - 1] + a[i - 1]; } // 查询区间 [l, r] 的和 int sum = s[r] - s[l - 1]; ``` ## 分和前缀和相反,它主要用来对区间进行修改。我们可以利用分数组进行区间修改,并最终得到修改后的序列。 ### 定义 给定一个长度为 $n$ 的序列 $a$,令 $d_i = a_i - a_{i-1}$($d_1 = a_1$),则 $d$ 称为序列 $a$ 的分数组。 ### 用法 分的主要作用是对区间进行修改。假设我们需要将区间 $[l,r]$ 的数加上 $k$,我们可以将分数组的 $d_l$ 加上 $k$,将 $d_{r+1}$ 减去 $k$。这样,对分数组求前缀和,就可以得到修改后的序列。 具体来说,我们可以按照以下步骤进行区间修改: 1. 对分数组的 $d_l$ 加上 $k$; 2. 对分数组的 $d_{r+1}$ 减去 $k$; 3. 对分数组求前缀和,得到修改后的序列。 分的时间复杂度为 $O(n)$,因为需要遍历一遍序列求出分数组。但是,如果有多次区间修改需要进行,那么使用分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 代码实现 下面是使用分进行区间修改的代码实现: ```cpp vector<int> a; // 原序列 vector<int> d(a.size() + 1); // 分数组 // 计算分数组 for (int i = 1; i < a.size(); i++) { d[i] = a[i] - a[i - 1]; } // 修改区间 [l, r],将数加上 k d[l] += k; d[r + 1] -= k; // 对分数组求前缀和,得到修改后的序列 for (int i = 1; i < d.size(); i++) { a[i] = a[i - 1] + d[i]; } ``` ## 常见问题 ### 1. 分数组的长度是多少? 分数组的长度应该比原序列长度多 1,因为 $d_1 = a_1$。 ### 2. 什么情况下使用前缀和?什么情况下使用分? 如果需要进行多次区间查询,那么使用前缀和可以将每次查询的时间复杂度降低到 $O(1)$;如果需要进行多次区间修改,那么使用分可以将每次修改的时间复杂度降低到 $O(1)$。 ### 3. 前缀和和分的本质区别是什么? 前缀和和分都是用来优化区间操作的算法,它们的本质区别在于: - 前缀和是通过预处理前缀和数组来优化区间查询; - 分是通过预处理分数组来优化区间修改。 ### 4. 前缀和和分能否同时使用? 当然可以。如果需要同时进行区间查询和修改,我们可以先使用分数组对区间进行修改,然后再对分数组求前缀和,得到修改后的序列。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值