1#组合数学初步——排列与组合之加法原理、乘法原理

0# “绪论”

去年的CSP没有考过,经过总结发现,分数很多失在了排列组合上,如果对一道我就能进入复赛。经受惨痛教训,痛心疾首,决定重整旗鼓再出发,第一步就是排列组合!

我新开的这个专栏,几乎90%的文字来自《信息学奥赛一本通:初赛篇》,很少的部分为我的注解。借助CSDN作为笔记罢了。

在此做引,意为始励志。     ——2021/3/19

1# 排列与组合

1.1# 历史

起源
  1772年,旺德蒙德以[n]p表示由n个不同的元素中每次取p个的排列数。而欧拉则与1771年以及于1778年以表示由n个不同元素中每次取出p个元素的组合数。至1872年,埃汀肖森引入了以表相同之意,这组合符号(Signs of Combinations)一直沿用至今。

1.2# 两个基本原理是排列和组合的基础

(1)加法原理:做一件事,完成它可以有 n n n办法,在第一类办法中有 m 1 m_1 m1种不同的方法,在第二类办法中有 m 2 m_2 m2种不同的方法,……,在第n类办法中有 m n m_n mn种不同的方法,那么完成这件事共有 N = m 1 + m 2 + m 3 + ⋅ ⋅ ⋅ + m n N=m_1+m_2+m_3+···+m_n N=m1+m2+m3++mn种不同方法。
(2)乘法原理:做一件事,完成它需要分成 n n n步骤,做第一步有 m 1 m_1 m1不同的方法,做第二步有 m 2 m_2 m2种不同的方法,……,做第 n n n步有 m n mn mn种不同的方法,那么完成这件事共有 N = m 1 × m 2 × m 3 × ⋅ ⋅ ⋅ × m n N=m_1 \times m_2 \times m_3 \times···\times m_n N=m1×m2×m3××mn种不同的方法。

这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。

疏:
例如:
(1)从甲城市到乙城市一共有几条路?5+3+7=15条【加法原理】
在这里插入图片描述

(2)甲城市到丙城市有几条走法?32=6条【乘法原理】
在这里插入图片描述
(3)甲城市到丙城市有几条走法?2+3+2
3条【乘法原理】&【加法原理】
在这里插入图片描述

好了,算是彻底通透了,对于加法、乘法原理理解清晰之后。就可以踏踏实实的学习排列组合了。

换句话说,加法、乘法原理就是排列组合的垫脚石。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值