0# “绪论”
去年的CSP没有考过,经过总结发现,分数很多失在了排列组合上,如果对一道我就能进入复赛。经受惨痛教训,痛心疾首,决定重整旗鼓再出发,第一步就是排列组合!
我新开的这个专栏,几乎90%的文字来自《信息学奥赛一本通:初赛篇》,很少的部分为我的注解。借助CSDN作为笔记罢了。
在此做引,意为始励志。 ——2021/3/19
1# 排列与组合
1.1# 历史
起源
1772年,旺德蒙德以[n]p
表示由n个不同的元素中每次取p个的排列数。而欧拉则与1771年以及于1778年以表示由n个不同元素中每次取出p个元素的组合数。至1872年,埃汀肖森引入了以表相同之意,这组合符号(Signs of Combinations)一直沿用至今。
1.2# 两个基本原理是排列和组合的基础
(1)加法原理:做一件事,完成它可以有
n
n
n类办法,在第一类办法中有
m
1
m_1
m1种不同的方法,在第二类办法中有
m
2
m_2
m2种不同的方法,……,在第n类办法中有
m
n
m_n
mn种不同的方法,那么完成这件事共有
N
=
m
1
+
m
2
+
m
3
+
⋅
⋅
⋅
+
m
n
N=m_1+m_2+m_3+···+m_n
N=m1+m2+m3+⋅⋅⋅+mn种不同方法。
(2)乘法原理:做一件事,完成它需要分成
n
n
n个步骤,做第一步有
m
1
m_1
m1种不同的方法,做第二步有
m
2
m_2
m2种不同的方法,……,做第
n
n
n步有
m
n
mn
mn种不同的方法,那么完成这件事共有
N
=
m
1
×
m
2
×
m
3
×
⋅
⋅
⋅
×
m
n
N=m_1 \times m_2 \times m_3 \times···\times m_n
N=m1×m2×m3×⋅⋅⋅×mn种不同的方法。
这样完成一件事的分“类”和“步”是有本质区别的,因此也将两个原理区分开来。
疏:
例如:
(1)从甲城市到乙城市一共有几条路?5+3+7=15条【加法原理】
(2)甲城市到丙城市有几条走法?32=6条【乘法原理】
(3)甲城市到丙城市有几条走法?2+3+23条【乘法原理】&【加法原理】
好了,算是彻底通透了,对于加法、乘法原理理解清晰之后。就可以踏踏实实的学习排列组合了。
换句话说,加法、乘法原理就是排列组合的垫脚石。