有12个球,一个次品,有一个天平,称3次得出哪个是次品,怎样称? .

上次去面试微软的实习生,面试的人问了我个问题。有12个球,一个次品,有一个天平,称3次得出哪个是次品,怎样称?当时,我就先犹豫了下。先问了他:次品不知道是轻还是重吗?他告诉我不知道。我就犯嘀咕了。这个怎么办。我一开始想了下,把12个球分成3份。想了一半了,可惜没有想到最后结果,最后只好放弃了。虽然早就有这样的问题了,但是自己孤陋寡闻啊,没有听说过。今天把这个答案给贴出来吧。告诫自己,一定要努力。

把12个球分别编上号,并随意分成3组。不失一般性,分别为:

(1、2、3、4)..①;(5、6、7、8)..②;(9、10、11、12)..③.

  第一称:把①与②组放在天平两端称。结果有两种情况:

一种是平;另一种是不平,不妨假设组①重于组②。

 

先来看平的情况。则1-8号球全部正常。次品必在组③,即在9-12号球中。

 在9-12号球中任选3个,不妨选(9、10、11)...④,存下12号球:在正常球1-8号球中也任选3个,不妨选(1、2、3)...⑤。

对④与⑤进行第二次称。结果有三:④=⑤;④>⑤;④<⑤。

  如果④=⑤时,次品是12号球。第三次用12号球与任意一个正常球称,则可立马将12号次品球是偏重、还是偏轻正确判断出来。 

如果④>⑤时,则次品球必在组④的3个球内,且重于正常球。这时,在9-11号3个球中任选两个(不妨设是9与10号球),再放到天平上称第三次。这时有三种情况:9=10;9>10;9<10。 

当9=10时,次品必是11号球,它比正常球要重;当9>10时,则偏重的9号球是次品;当9<10时,偏重的10号球是次品。

 

同理可证④<⑤时的情况。

 

对于另一种不平的情况下面继续证明。

  当不平时有两种情况,即组①>组②;组①<组②。

现在来讨论当组①>组②的情况。即(1、2、3、4)重于(5、6、7、8)。

将组①与组②中的球进行调整,并重新编组:组①中留下3号球,拿出4号球,并把1、2球改放到组②中去,并添入正常球一个,不妨设为9号球;组②中留下7号球,拿出6、8号球,并把5号球改放到组①中去,编成新组:(5、3、9)…③;(1、2、7)…④。

  现在进行第二称,即把组③和组④放在天平上称。结果有三:

③=④;③>④;③<④。

当③=④时。则次品球必在拿出去的几个球内,即在4、6、8号3个球内,且知4号球至少重于6号、8号球中的一个。这时用6号球与8号球进行第三次称,结果是6号=8号;6号>8号;6号<8号。当6号=8号时,则4号球是次品球,且它比正常球要重;当6号>8号时,则次品是8号球,它比正常球要轻;当6号<8号时,则次品是6号球,它比正常球要轻。

  当③>④时。说明:变动后的组仍保持着原有组的重轻本质,这是由组内保持不变的球造成的,则次品球必在3号与7号球之间,且知道3号球一定重于7号球。这时进行第三次称:从3、7号球中任选一与正常球称,不妨选3号球与正常球9号称。结果有:3号=9号;3号>9号;3号<9号。当3号=9号时,则次品是7号球,它比正常球要轻;当3号>9号时,则次品是3号球,它比正常球要重;当3号<9号时,又由3号>7号,则3号与7号均是次品,这不可能,因为与条件中规定的次品只有一个矛盾。

  当③<④时。这是由交换了组别的球造成的,因此,次品球必在1、2、与5号之间,且5号球至少轻于1、2号球中的一个。这时用1、2号球进行第三次称,。结果有:1号=2号;1号>2号;1号<2号。当1号=2号时,次品是5号它比正常球要轻;当1号>2号时,这时次品是1号,它比正常球要重;当1号<2号时,又5号也小于2号,则次品是2号,它比正常球要重。

 

同理可证:组①<组②。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值