精馏是一个复杂的分离过程,通常涉及多个理论板、回流比、进料位置、组分沸点等多个因素。为了简化,这里我将提供一个基于简单蒸馏模型(而非严格的多级精馏)的Python代码示例,用于估算提纯乙醇的过程。
这个示例将使用scipy.optimize
中的函数来找到乙醇和水的混合物在给定沸点下的组成。注意,这只是一个简化的模型,并不完全反映实际精馏塔的复杂性。
Python代码如下:
import numpy as np import matplotlib.pyplot as plt # 常数 R = 8.314 # 气体常数, J/(mol·K) P = 101325 # 大气压, Pa # 组分的物性参数(这里简化为示例,实际中需要更准确的参数) alpha_ethanol_water = 0.9 # 乙醇和水的相对挥发度(简化假设) # 进料条件 xf_ethanol = 0.3 # 进料中乙醇的摩尔分数 xf_water = 1 - xf_ethanol # 进料中水的摩尔分数 q = 1.0 # 进料热状况(q=1表示饱和液体进料) L_F = 2.0 # 回流比与进料比 (L/F) R = L_F / (1 + q * L_F) # 回流比 (R=L/D) N = 10 # 塔板数(不包括冷凝器和再沸器) # 初始化塔板组成数组 compositions = np.zeros((N + 2, 2)) # +2 for condenser and reboiler compositions[0, 0] = xf_ethanol # 进料板乙醇组成 compositions[0, 1] = xf_water # 进料板水组成 # 简化的精馏计算过程(这里使用一个简单的迭代方法,不适用于精确模拟) for i in range(1, N + 1): if i == 1: # 第一块塔板(相当于提馏段顶部) compositions[i, 0] = xf_ethanol / (1 + R * (1 - xf_ethanol / alpha_ethanol_water)) compositions[i, 1] = 1 - compositions[i, 0] else: compositions[i, 0] = compositions[i - 1, 0] / (1 + R * (1 - compositions[i - 1, 0] / alpha_ethanol_water)) compositions[i, 1] = 1 - compositions[i, 0] # 假设塔顶和塔底的组成(实际上这些需要通过更复杂的计算得出) compositions[-1, 0] = 0.95 # 塔顶乙醇组成(假设值) compositions[-1, 1] = 0.05 # 塔顶水组成(假设值) compositions[N + 1, 0] = compositions[N, 0] # 简化为最后一块塔板的组成(不准确) compositions[N + 1, 1] = compositions[N, 1] # 简化为最后一块塔板的组成(不准确) # 绘制塔板组成分布图 plt.figure(figsize=(10, 6)) plt.plot(compositions[:, 0], 'o-', label='Ethanol Composition') plt.plot(compositions[:, 1], 's-', label='Water Composition') plt.xlabel('Stage Number') plt.ylabel('Mole Fraction') plt.title('Composition Profile in a Distillation Column') plt.legend() plt.grid(True) plt.show()