标准降水蒸散发指数(SPEI)是一种用于量化气候干旱严重性的指标,它结合了降水和潜在蒸散发的信息,并将这些数据标准化,以便能够在不同的时间和空间尺度上进行比较。SPEI的计算通常涉及以下步骤:
-
数据收集:收集降水数据和潜在蒸散发数据。这些数据通常是月度的,但也可以根据需要计算其他时间尺度的SPEI(如3个月、6个月等)。
-
计算降水与潜在蒸散发的差值:对于每个月份,计算降水量(P)与潜在蒸散发量(PET)之间的差值,这个差值通常被称为水分亏缺或水分盈余。
D = P - PET
其中,D表示水分亏缺或盈余。
-
数据累积(可选):对于计算多个月尺度的SPEI(如3个月SPEI),需要将D值进行累积。例如,对于3个月尺度的SPEI,将连续3个月的D值相加。
-
拟合概率分布:对D值(或累积D值)进行概率分布拟合。常用的分布有正态分布、对数正态分布、Gamma分布等。选择哪种分布取决于数据的特性和研究区域的气候条件。
-
标准化处理:将D值(或累积D值)标准化,以得到SPEI值。标准化的方法是将D值转换为其对应的标准正态分布的Z值。这可以通过以下公式完成:
SPEI = (D - μ) / σ
其中,μ是D值的均值,σ是D值的标准差。如果使用了其他概率分布,则需要使用相应的参数和方法进行标准化。
clc;close all;clear all;warning off;%清除变量
% 随机产生30年的月数据
years = 30;
months_per_year = 12;
total_months = years * months_per_year;
% 随机生成月降水量(单位:毫米)
rainfall = 10 + 90 * rand(total_months, 1); % 假设降水量在10到100毫米之间
% 随机生成月潜在蒸散发量(单位:毫米)
pet = 30 + 70 * rand(total_months, 1); % 假设潜在蒸散发量在30到100毫米之间
% 计算降水与潜在蒸散发的差值
d_i = rainfall - pet;
% 拟合差值数据的概率分布(这里使用正态分布作为示例,实际上可能需要使用其他分布)
mu = mean(d_i);
sigma = std(d_i);
[f_i, x_i] = ksdensity(d_i); % 核密度估计,用于绘图展示
% 标准化处理得到SPEI值
spei = (d_i - mu) ./ sigma;
% 绘图展示降水、潜在蒸散发和SPEI
figure;
subplot(3,1,1);
plot(rainfall);
xlabel('时间(月)');
ylabel('降水量(毫米)');
title('月降水量');
subplot(3,1,2);
plot(pet);
xlabel('时间(月)');
ylabel('潜在蒸散发量(毫米)');
title('月潜在蒸散发量');
subplot(3,1,3);
plot(spei);
xlabel('时间(月)');
ylabel('SPEI');
title('SPEI值');
figure;
plot(x_i,f_i,'b','linewidth',1);
xlabel('x_i','fontname','宋体');
ylabel('f_i','fontname','宋体');
title('数据的概率分布','fontname','宋体');