【LOJ】#138. 类欧几里得算法

这篇博客详细介绍了如何解决LOJ#138问题,利用类欧几里得算法进行计算。博主分享了在解决过程中遇到的难点和解题思路,并给出了代码实现。通过拉格朗日插值和二项式展开等方法,逐步求解复杂情况下的函数表达式。最后,博主讨论了算法的时间复杂度,指出迭代次数与c的对数成正比,每层枚举最多是O(k^4)。
摘要由CSDN通过智能技术生成

传送门:loj138


题解

被标题坑进去,断断续续做了一天。。。确实是“类欧几里得算法”啊(雾。。。

原题解-fjzzq2002

设答案为函数 f ( a , b , c , n , k 1 , k 2 ) = ∑ i = 0 n i k 1 ⌊ a i + b c ⌋ k 2 f(a,b,c,n,k_1,k_2)=\sum\limits_{i=0}^ni^{k_1}\lfloor\dfrac{ai+b}{c}\rfloor^{k_2} f(a,b,c,n,k1,k2)=i=0nik1cai+bk2

考虑以下情况:

  • ⌊ a i + b c ⌋ \lfloor\dfrac{ai+b}{c}\rfloor cai+b为常量( a = 0 a=0 a=0 ⌊ a n + b c ⌋ = 0 \lfloor\dfrac{an+b}{c}\rfloor=0 can+b=0),直接拉格朗日插值算出 ∑ i = 0 n i k 1 \sum\limits_{i=0}^ni^{k_1} i=0nik1即可。

  • a ≥ c a\geq c ac b ≥ c b\geq c bc f ( a , b , c , n , k 1 , k 2 ) = ∑ i = 0 n i k 1 ( ⌊ a c ⌋ ⋅ i + ⌊ b c ⌋ + ⌊ i ⋅ ( a % c ) + b % c c ⌋ ) k 2 f(a,b,c,n,k_1,k_2)=\sum\limits_{i=0}^ni^{k_1}(\lfloor\dfrac{a}{c}\rfloor·i+\lfloor\dfrac{b}{c}\rfloor+\lfloor\dfrac{i·(a\%c)+b\%c}{c}\rfloor)^{k_2} f(a,b,c,n,k1,k2)=i=0nik1(cai+cb+ci(a%c)+b%c)k2,二项式展开一下得到若干 λ ∑ i = 0 n i k 1 ( ⌊ i ⋅ ( a % c ) + b % c c ⌋ ) k 2 \lambda\sum\limits_{i=0}^n i^{k_1} (\lfloor\dfrac{i·(a\%c)+b\%c}{c}\rfloor)^{k_2} λi=0nik1(ci(a%c)+b%c)k

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值