逆元 笔记

Z:整数集
Z+(N*,N+):正整数集
N:自然数集
R:实数集
C:复数集
Q:有理数集

整除

a|b :a整除b
b不能被a整除就记作 ∤ \nmid
(a,b) :gcd(a,b)
[a,b] : lcm(a,b)
p :素数
k :未知整数或任意整数

(1)
a ∣ b a|b ab <=> − a ∣ b -a|b ab <=> a ∣ − b a|-b ab <=> ∣ a ∣ ∣ ∣ b ∣ |a| | |b| a∣∣∣b
即正负对整除关系没有影响

(2)
a ∣ b , b ∣ c a|b,b|c ab,bc <=> a ∣ c a|c ac

(3)
a ∣ b , a ∣ c a|b,a|c ab,ac等价于对任意整数 x , y x,y x,y,有 a ∣ ( b x + c y ) a|(bx+cy) a(bx+cy)

(4)
设m ≠ \not = = 0, a ∣ b a|b ab,则 m a ∣ m b ma|mb mamb

(5)
( m , a ) = 1 , m ∣ a b (m,a)=1,m|ab (m,a)=1,mab,则 m ∣ b m|b mb

(6)
所有的 a i ∣ c ( 1 < = i < = n ) a_i |c(1<=i<=n) aic(1<=i<=n)成立的充分必要条件是 [ a 1 , a 2 , . . . , a n ] ∣ c [a_1,a_2,...,a_n]|c [a1,a2,...,an]c。也就是说一组数的公倍数必然是这组数最小公倍数的倍数
(充分必要条件:a <=> b )

(7)
对任意整数a,b>0,存在唯一的数对q,r,使a=bq+r,其中0<=r<b,此外,b|a的充分必要条件是r=0。

同余

同余的性质:a,b两个数模n同余,也就是说a%n==b%n
a ≡ \equiv b(mod m)

性质1

a ≡ \equiv a(mod m) 自反
b ≡ \equiv a(mod m) 对称
a ≡ \equiv b(mod m),b ≡ \equiv c(mod m) => a ≡ \equiv c(mod m) 传递
a+c ≡ \equiv b+c(mod m) 同价
a × \times ×c ≡ \equiv b × \times ×c(mod m), a × \times ×c ≡ \equiv b × \times ×d(mod m) ( c ≡ \equiv d(mod m))同乘
a n ^n n ≡ \equiv b n ^n n(mod m) 同幂

性质2

a m o d mod mod p=x,a m o d mod mod q=x,p和q互质,则a m o d mod mod pq=x

性质3

设d>=1,d|m,那么,若a ≡ \equiv b(mod m),则有:a ≡ \equiv b(mod d)

性质4

设d ≠ \not = = 0,那么a ≡ \equiv b(mod m)等价于da ≡ \equiv db(mod |d|m)

性质5

同余式ca ≡ \equiv cb(mod m),等价于a ≡ \equiv b(mod m ( c , m ) \frac{m}{(c,m)} (c,m)m)

性质6

同余式组a ≡ \equiv b(mod m i m_i mi)( 1 < = i < = n 1<=i<=n 1<=i<=n),则a ≡ \equiv b(mod m [ m 1 , m 2 , . . . , m n m[m_1,m_2,...,m_n m[m1,m2,...,mn))

性质7

f ( x ) = a n x n + . . . + a 0 , g ( x ) = b n x n + . . . + b 0 f(x)=a_nx_n+...+a_0,g(x)=b_nx_n+...+b_0 f(x)=anxn+...+a0,g(x)=bnxn+...+b0是两个整系数多项式,满足: a i a_i ai ≡ \equiv b i b_i bi(mod m)( 0 < = i < = n 0<=i<=n 0<=i<=n)

取模的四则运算

a+b取模p:(a+b)%p
a-b取模p:(a-b+p)%p
a × \times ×b取模p:a*b%p

a ÷ \div ÷b取模p:a/b%p ???

逆元(乘法逆元)

在模运算系统中,inv(a)代表a分之一。所以乘法逆元也成为“数论倒数”。

费马小定理

如果p是一个质数,且整数a不是p的倍数,则有: a a ap-1 ≡ \equiv 1 1 1( m o d mod mod p p p)

x => b-1 % p
a / b = a * b-1 / b* b
a / b = a / b * b * b-1%p
b * b-1 % p = 1

inv(a)=ap-2mod p

例题

1.求逆元

时间限制:1秒 内存限制:128M

题目描述

如果一个线性同余方程ax≡1(mod b),则称x为a mod b的逆元,记作a​−1
​​ 。现在令b=109+7,求a​−1

样例输入

3

样例输出

333333336

#include<bits/stdc++.h>
using namespace std;
long long a,mod=1e9+7,ans=1,n=1e9+5;
int main(){
	scanf("%lld",&a);
	while(n){
		if(n&1){
			ans*=a;
			ans%=mod;
		}
		n>>=1;
		a*=a;
		a%=mod;
	}
	printf("%lld",ans);
	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值