DP---最长公共子序列&最长公共字串

【动态规划】最长公共子序列与最长公共子串

1. 问题描述

子串应该比较好理解,至于什么是子序列,这里给出一个例子:有两个母串

  • cnblogs
  • belong

比如序列bo, bg, lg在母串cnblogs与belong中都出现过并且出现顺序与母串保持一致,我们将其称为公共子序列。最长公共子序列(Longest Common Subsequence, LCS),顾名思义,是指在所有的子序列中最长的那一个。子串是要求更严格的一种子序列,要求在母串中连续地出现。在上述例子的中,最长公共子序列为blog(cnblogs, belong),最长公共子串为lo(cnblogs, belong)。

2. 求解算法

对于母串 X=<x1,x2,,xm> X=<x1,x2,⋯,xm> Y=<y1,y2,,yn> Y=<y1,y2,⋯,yn>,求LCS与最长公共子串。

暴力解法

假设  m<n m<n, 对于母串 X X,我们可以暴力找出 2m 2m个子序列,然后依次在母串 Y Y中匹配,算法的时间复杂度会达到指数级 O(n2m) O(n∗2m)。显然,暴力求解不太适用于此类问题。

动态规划

假设 Z=<z1,z2,,zk> Z=<z1,z2,⋯,zk> X X Y Y的LCS, 我们观察到

  • 如果 xm=yn xm=yn,则 zk=xm=yn zk=xm=yn,有 Zk1 Zk−1 Xm1 Xm−1 Yn1 Yn−1的LCS;
  • 如果 xmyn xm≠yn,则 Zk Zk Xm Xm Yn1 Yn−1的LCS,或者是 Xm1 Xm−1 Yn Yn的LCS。

因此,求解LCS的问题则变成递归求解的两个子问题。但是,上述的递归求解的办法中,重复的子问题多,效率低下。改进的办法——用空间换时间,用数组保存中间状态,方便后面的计算。这就是动态规划(DP)的核心思想了。

DP求解LCS

用二维数组c[i][j]记录串 x1x2xi x1x2⋯xi y1y2yj y1y2⋯yj的LCS长度,则可得到状态转移方程

c[i,j]=0c[i1,j1]+1max(c[i,j1],c[i1,j])i=0 or j=0i,j>0 and  xi=yji,j>0 and xiyj c[i,j]={0i=0 or j=0c[i−1,j−1]+1i,j>0 and  xi=yjmax(c[i,j−1],c[i−1,j])i,j>0 and xi≠yj

代码实现

public static int lcs(String str1, String str2) {
    int len1 = str1.length();
    int len2 = str2.length();
    int c[][] = new int[len1+1][len2+1];
    for (int i = 0; i <= len1; i++) {
        for( int j = 0; j <= len2; j++) {
            if(i == 0 || j == 0) {
                c[i][j] = 0;
            } else if (str1.charAt(i-1) == str2.charAt(j-1)) {
                c[i][j] = c[i-1][j-1] + 1;
            } else {
                c[i][j] = max(c[i - 1][j], c[i][j - 1]);
            }
        }
    }
    return c[len1][len2];
}

DP求解最长公共子串

前面提到了子串是一种特殊的子序列,因此同样可以用DP来解决。定义数组的存储含义对于后面推导转移方程显得尤为重要,糟糕的数组定义会导致异常繁杂的转移方程。考虑到子串的连续性,将二维数组 c[i,j] c[i,j]用来记录具有这样特点的子串——结尾为母串 x1x2xi x1x2⋯xi y1y2yj y1y2⋯yj的结尾——的长度。

得到转移方程:

c[i,j]=0c[i1,j1]+10i=0 or j=0xi=yjxiyj c[i,j]={0i=0 or j=0c[i−1,j−1]+1xi=yj0xi≠yj

最长公共子串的长度为  max(c[i,j]), i{1,,m},j{1,,n} max(c[i,j]), i∈{1,⋯,m},j∈{1,⋯,n}

代码实现

public static int lcs(String str1, String str2) {
    int len1 = str1.length();
    int len2 = str2.length();
    int result = 0;     //记录最长公共子串长度
    int c[][] = new int[len1+1][len2+1];
    for (int i = 0; i <= len1; i++) {
        for( int j = 0; j <= len2; j++) {
            if(i == 0 || j == 0) {
                c[i][j] = 0;
            } else if (str1.charAt(i-1) == str2.charAt(j-1)) {
                c[i][j] = c[i-1][j-1] + 1;
                result = max(c[i][j], result);
            } else {
                c[i][j] = 0;
            }
        }
    }
    return result;
}

3. 参考资料

[1] cs2035, Longest Common Subsequence.
[2] 一线码农, 经典算法题每日演练——第四题 最长公共子序列.
[3] GeeksforGeeks, Dynamic Programming | Set 29 (Longest Common Substring).


转载自:
作者: Treant

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值