关于即将发布的TensorFlow 2.0,你需要知道这几件事

AI前线导读: 对于最流行的机器学习框架来说,TensorFlow 2.0将是一个重要的里程碑:大量的更改即将到来,所有的一切都以人人可以使用ML为目标。但是,这些更改要求老用户完全重新学习如何使用框架:本文介绍了1.x和2.x版本之间的所有(已知的)差异,主要是思维方式的改变,并着重介绍了新实现的优缺点。

更多干货内容请关注微信公众号“AI 前线”(ID:ai-front)

对于最流行的机器学习框架来说,TensorFlow 2.0将是一个重要的里程碑:大量的更改即将到来,所有的一切都以人人可以使用ML为目标。但是,这些更改要求老用户完全重新学习如何使用框架:本文介绍了1.x和2.x版本之间的所有(已知的)差异,主要是思维方式的改变,并着重介绍了新实现的优缺点。

对于新手来说,本文也是一个很好的起点:现在就开始以TensorFlow 2.0的方式思考,这样你就不必重新学习一个新的框架(除非TensorFlow 3.0发布)。

TensorFlow 2.0:为什么?何时?

TensorFlow 2.0的核心思想是使TensorFlow更易于学习和应用。

公告邮件列表中,谷歌大脑工程师Martin Wicke对TensorFlow 2.0做了初步介绍。简而言之:

  • Eager Execution将是2.0的核心特性。它将用户对编程模型的期望与TensorFlow实践更好地结合起来,使TensorFlow更易于学习和应用。
  • 支持更多的平台和语言,通过交换格式的标准化和API的对齐,改进这些组件之间的兼容性和对等性。
  • 删除弃用的API并减少重复,避免给用户带来混乱。
  • 公开的2.0设计过程:社区现在可以与TensorFlow开发人员合作,使用TensorFlow讨论组讨论新特性。
  • 兼容性和延续性:提供一个与TensorFlow 1.x兼容的模块,这意味着TensorFlow 2.0将有一个包含所有TensorFlow 1.x API的模块。
  • On-disk兼容性:TensorFlow 1.x中导出的模型(检查点和冻结模型)将与TensorFlow 2.0兼容,只需要重命名某些变量。
  • tf.contrib:完全删除。大型的维护中的模块将移动到独立的存储库;未使用和未维护的模块将被删除。

实际上,如果你是一个TensorFlow新手,那么你很幸运。如果像我一样,从0.x版本开始使用TensorFlow,那么必须重写所有的代码库(与从0.x向1.x转换不同,更改的地方特别多);不过,TensorFlow的作者声称,将会发布一个转换工具来帮助转换。然而,转换工具并不完美,需要人工干预。

此外,你必须改变你的思维方式;这很有挑战性,但每个人都喜欢挑战,不是吗?

让我们面对这个挑战,从第一个巨大的差异开始详细查看这次新版本设计的更改:删除tf.get_variablef.variable_scopetf.layers和强制转换为基于Keras的方法,使用tf.keras

请注意,发布日期还没有确定。但是,从TensorFlow讨论组中,我们知道,2018年底发布可能会发布一个预览版本,2.0的正式版本可能会在2019年春天发布。

因此,最好是在RFC被接受后立即更新所有现有的代码库,以便顺利过渡到这个新的TensorFlow版本。

Keras(OOP)与TensorFlow 1.x比较

RFC:TensorFlow 2.0中的变量”已经被接受。这个RFC可能是对现有代码库影响最大的一个,而且,TensorFlow的老用户需要换一种新的思维方式。

正如文章“使用Go来理解TensorFlow”中描述的那样,每个变量在计算图中都有一个唯一的名称。

作为一个早期的TensorFlow用户,我习惯于按照以下模式设计我的计算图:

  1. 哪些操作连接了变量节点?将图定义为多个连接的子图。为了定义不同图的变量,在单独的tf.variable_scope中定义每个子图。在不同的范围内定义子图,可以在Tensorboard中得到一个清晰的图表示。
  2. 在相同的执行步骤中,我是否需要多次使用子图?为了避免创建一个以_n为前缀的新图,一定要利用tf.variable_scopereuse参数。
  3. 图已经定义了?创建变量初始化op(看看tf.global_variables_initializer()调用了多少次?)
  4. 把图加载到Session中并运行。

在我看来,示例“如何在TensorFlow中实现简单的GAN”可以更好地说明这些步骤的合理性。

通过GAN了解TensorFlow 1.x

GAN判别器D必须使用tf.variable_scope reuse参数定义,因为,我们希望首先给D提供真样本,然后提供假样本,最后计算D相关参数的梯度。

相反,生成网络G在一次迭代中从未使用两次,因此,不需要担心其变量重用。

def generator(inputs):    \u0026quot;\u0026quot;\u0026quot;生成器网络    Args:        inputs: 一个(None, latent_space_size) tf.float32张量    Returns:        G: 生成器输出节点    \u0026quot;\u0026quot;\u0026quot;a    with tf.variable_scope(\u0026quot;generator\u0026quot;):        fc1 = tf.layers.dense(inputs, units=64, activation=tf.nn.elu, name=\u0026quot;fc1\u0026quot;)        fc2 = tf.layers.dense(fc1, units=64, activation=tf.nn.elu, name=\u0026quot;fc2\u0026quot;)        G = tf.layers.dense(fc1, units=1, name=\u0026quot;G\u0026quot;)    return Gdef discriminator(inputs, reuse=False):    \u0026quot;\u0026quot;\u0026quot;判别器网络    Args:        inputs: 一个(None, 1) tf.float32张量        reuse: Python布尔值, 说明是希望重用(True)还是声明(False)    Returns:        D: 判别器输出节点    \u0026quot;\u0026quot;\u0026quot;    with tf.variable_scope(\u0026quot;discriminator\u0026quot;, reuse=reuse):        fc1 = tf.layers.dense(inputs, units=32, activation=tf.nn.elu, name=\u0026quot;fc1\u0026quot;)        D = tf.layers.dense(fc1, units=1, name=\u0026quot;D\u0026quot;)    return D

当调用这两个函数时,在默认图中定义了两个不同的子图,每个子图都有自己的作用域(生成器或判别器)。请注意,这个函数返回的是定义子图的输出张量,而不是图本身。

为了共用D图,我们定义了2个输出(真和假),并定义了训练G和D所需的损失函数。

# 定义真输入,一组从真实数据的抽样值real_input = tf.placeholder(tf.float32, shape=(None,1))# 定义判别器网络及其参数D_real = discriminator(real_input)# 任意大小的噪声先验向量latent_space_size = 100# 定义输入噪声,定义生成器input_noise = tf.placeholder(tf.float32, shape=(None,latent_space_size))G = generator(input_noise)# 现在,我们已经定义了生成器输出G,我们可以把它提供给D的输入# `discriminator`的这个调用不会定义一个新图,但会**重用**之前定义的变量

最后要做的只是定义训练D和G所需的2个损失函数和2个优化器。

D_loss_real = tf.reduce_mean(    tf.nn.sigmoid_cross_entropy_with_logits(logits=D_real, labels=tf.ones_like(D_real)))D_loss_fake = tf.reduce_mean(    tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.zeros_like(D_fake)))# D_loss:当第一次调用时会使用D_loss_real做一次前向传递# 然后使用D_loss_fake再做一次,共享同样的D参数。D_loss = D_loss_real + D_loss_fakeG_loss = tf.reduce_mean(    tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.ones_like(D_fake)))

损失函数很容易定义。对抗式训练的特点是首先要用真样本和由G生成的样本对D进行训练,然后用D评估的结果作为输入信号对对抗性的G进行训练。

对抗性训练的这两个训练步骤需要单独运行,但是,我们在同一个图中定义了模型,我们不想在训练D时更新G变量,反之亦然。

这样,由于我们在默认图中定义了每个变量,所以每个变量都是全局的,我们必须使用两个不同的列表获得正确的变量,并确保定义了优化器,以便计算梯度,并仅对恰当的子图应用更新。

# 获得D和G变量D_vars = tf.trainable_variables(scope=\u0026quot;discriminator\u0026quot;)G_vars = tf.trainable_variables(scope=\u0026quot;generator\u0026quot;)# 定义优化器和训练操作train_D = tf.train.AdamOptimizer(1e-5).minimize(D_loss, var_list=D_vars)train_G = tf.train.AdamOptimizer(1e-5).minimize(G_loss, var_list=G_vars)

好了,我们到了第三步,图定义最后要做的是定义变量初始化op:

init_op = tf.global_variables_initializer()

优点 / 缺点

图已经正确定义,当在训练循环和会话中使用时,它可以正常工作。然而,从软件工程的角度来看,有一些特性值得注意:

  1. 使用上下文管理器tf.variable_scope更改由tf.layers定义的变量的(完整)名称:在不同的变量作用域内,对tf.layers.* 方法的相同调用会在不同的变量作用域内定义一组新的变量。
  2. 布尔标识reuse可以完全改变tf.layers.*方法任何调用的行为(定义或重用)。
  3. 每个变量都是全局的: tf.layers调用tf.get_variable(在tf.layers内部使用)定义的变量可以从任何地方访问:上面使用tf.trainable_variables(prefix)来获得两个变量列表就是对这种情况的一个很好说明。
  4. 定义子图并不简单:只是调用discriminator并不能获得一个新的、独立的判别器。有点违反直觉。
  5. 子图定义的返回值不是其唯一的输出向量,其中也没有包含图的所有信息(虽然可以追溯到输入,但并不简单)。
  6. 定义变量初始化op太无趣(但这刚刚通过 tf.train.MonitoredSessiontf.train.MonitoredTrainingSession得到了解决)。

这6条大概全是缺点。

我们使用TensorFlow 1.x的方式定义了GAN:下面让我们迁移到TensorFlow 2.0。

通过GAN了解TensorFlow 2.x

如前一节所述,在TensorFlow 2.x中,思维方式改变了。tf.get_variabletf.variable_scopetf.layers被移除并强制转换为基于Keras的方法,使用tf.keras会迫使TensorFlow开发人员改变其思维方式。

我们必须使用tf.keras定义生成器G和判别器D:这将为我们提供变量共享特性,我们曾经使用该特性来定义D,但是底层实现的方式不同。

请注意:tf.layers将被移除,因此,请现在就开始使用tf.keras定义你的模型,这是为2.x做准备所必须的。

def generator(input_shape):    \u0026quot;\u0026quot;\u0026quot;生成器王国    Args:        input_shape:期望的输入形状(如: (latent_space_size))    Returns:        G:生成器模型    \u0026quot;\u0026quot;\u0026quot;    inputs = tf.keras.layers.Input(input_shape)    net = tf.keras.layers.Dense(units=64, activation=tf.nn.elu, name=\u0026quot;fc1\u0026quot;)(inputs)    net = tf.keras.layers.Dense(units=64, activation=tf.nn.elu, name=\u0026quot;fc2\u0026quot;)(net)    net = tf.keras.layers.Dense(units=1, name=\u0026quot;G\u0026quot;)(net)    G = tf.keras.Model(inputs=inputs, outputs=net)    return Gdef discriminator(input_shape):    \u0026quot;\u0026quot;\u0026quot;判别器网络    Args:        input_shape:期望的输入形状(如: (latent_space_size))    Returns:        D:判别器模型    \u0026quot;\u0026quot;\u0026quot;    inputs = tf.keras.layers.Input(input_shape)    net = tf.keras.layers.Dense(units=32, activation=tf.nn.elu, name=\u0026quot;fc1\u0026quot;)(inputs)    net = tf.keras.layers.Dense(units=1, name=\u0026quot;D\u0026quot;)(net)    D = tf.keras.Model(inputs=inputs, outputs=net)    return D

看下该方法的不同:生成器和判别器都返回一个tf.keras.Model,而不仅仅是一个输出张量。

这意味着,使用Keras,我们可以实例化我们的模型,并在源代码的不同部分使用相同的模型,我们可以有效地使用模型变量,而无需定义以_n为前缀的新子图。实际上,和1.x版本不同,我们只定义一个D模型,但使用了两次。

# 定义真输入,一组从真实数据抽取的值real_input = tf.placeholder(tf.float32, shape=(None,1))# 定义判别器模型D = discriminator(real_input.shape[1:])# 设置任意形状的噪声先验向量latent_space_size = 100# 定义输入噪声形状,定义生成器input_noise = tf.placeholder(tf.float32, shape=(None,latent_space_size))G = generator(input_noise.shape[1:])

同样:不需要像前面那样定义D_fake,也不需要在定义图时提前考虑变量共享问题。

现在,我们可以继续定义G和D的损失函数了。

D_real = D(real_input)D_loss_real = tf.reduce_mean(    tf.nn.sigmoid_cross_entropy_with_logits(logits=D_real, labels=tf.ones_like(D_real)))G_z = G(input_noise)D_fake = D(G_z)D_loss_fake = tf.reduce_mean(    tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.zeros_like(D_fake)))D_loss = D_loss_real + D_loss_fakeG_loss = tf.reduce_mean(    tf.nn.sigmoid_cross_entropy_with_logits(logits=D_fake, labels=tf.ones_like(D_fake)))

到目前为止还不错。最后要做的是定义两个分别优化D和G的优化器。因为我们用的是tf.keras,所以不需要手动创建需要更新的变量列表,因为tf.keras.Models对象本身具有这个属性:

# 定义优化器和训练操作train_D = tf.train.AdamOptimizer(1e-5).minimize(D_loss, var_list=D.trainable_variables)train_G = tf.train.AdamOptimizer(1e-5).minimize(G_loss, var_list=G.trainable_variables)

我们已经准备好了:我们到达了第3步,由于我们仍然在使用静态图模式,我们必须定义变量初始化op:

init_op = tf.global_variables_initializer()

优点/缺点

  • 从tf.layers转换到tf.keras很简单:所有的tf.layers方法都有对等的tf.keras.layers方法。
  • f.keras.Model完全解决了变量重用以及图重定义的困扰。
  • tf.keras.Model不是一个输出张量,但是一个包含自有变量的完整模型。
  • 我们还是必须初始化所有变量,但就像我们前面说过的那样,tf.train.MonitoredSession可以帮我们完成。

不管是在TensorFlow 1.x中,还是在2.x中,GAN示例都是首先使用“旧”的图定义范式,然后在会话中执行(不管是现在还是将来,这都是一个很好且有效的范式,并且是——个人观点——最好的)。

然而,TensorFlow 2.x的另一个大变化是让Eager模式成为默认执行模式。在TensorFlow 1.x中,我们必须显式地启用Eager Execution,而在TensorFlow 2.x中,我们要做相反的事情。

Eager模式优先

以下是Eager Execution指南的解释:

TensorFlow的Eager Execution是一种必要的编程环境,它可以立即评估操作,而不需要构建图:操作返回具体的值,而不是构建一个计算图并稍后运行。这使得开始TensorFlow入门和模型调试变得很容易,同时也减少了模板文件。请按照本指南在交互式Python解释器中运行下面的代码示例。

Eager Execution是一个灵活的机器学习研究和试验平台,提供以下特性:

  • 直观的接口——自然地构造代码并使用Python数据结构。快速迭代小模型和小样本。
  • 更易于调试——直接调用ops检查正在运行的模型和测试更改。使用标准的Python调试工具进行即时错误报告。
  • 自然的控制流——使用Python控制流而不是图控制流,简化了动态模型的规范。

简而言之:不需要首先定义图,然后在会话中计算它。在Eager模式中使用TensorFlow可以混合定义和执行,就像标准的Python程序一样。

这与静态图版本并不是一一对应的,因为有些在图中很自然的东西并不存在于这样一个命令式环境中。

这里,最重要的例子是tf.GradientTape上下文管理器,这只存在于Eager模式下。

当我们有一个图,我们知道节点是如何连接的,当我们要计算某个函数的梯度时,我们可以从输出回溯到图的输入,计算梯度并得到结果。

在Eager模式下,我们不能这样。使用自动微分法计算函数梯度的唯一方法是构建一个图。构建在tf.GradientTape上下文管理器中执行的、对一些可观察的元素(比如变量)进行操作的图,然后,可以由tf.GradientTape来计算我们需要的梯度。

tf.GradientTape文档页上,我们可以找到例子,清楚地说明如何使用tf.GradientTape以及为什么需要它:

x = tf.constant(3.0)with tf.GradientTape() as g:  g.watch(x)  y = x * xdy_dx = g.gradient(y, x) # Will compute to 6.0

此外,控制流操作就是Python的控制流操作(比如for loop、if语句……),与tf.while_loop、tf.map_fn、tf.cond不同,那些方法我们必须在静态图版本中使用。

有一个工具,叫做Autograph,它可以帮助你使用普通的Python编写复杂的图代码。在后台,AutoGraph自动将代码转换为等效的TensorFlow图代码。

不过,你需要编写的Python代码不是纯Python(例如,如果你要声明一个函数返回一个指定TensorFlow数据类型的元素列表,那会用到在标准Python函数中不会使用的操作),而其功能至少在本文写作时是有限的。

之所以创建这个工具,是因为图版本有一个很大的优势,即一旦导出,它就成为“单个文件”,而在生产环境中交付经过训练的机器学习模型,使用静态图模式要容易得多。另外,静态图模式更快。

就我个人而言,我不太喜欢Eager模式。可能是因为我已经习惯了静态图版本,并且我发现,Eager模式是PyTorch的粗糙模仿。另外,尝试将GAN从PyTorch实现转成TensorFlow 2.x版本,同时使用静态图和Eager模式时,我无法让Eager模式发挥作用,我还不知道为什么(虽然静态图实现工作得很好)。我在GitHub上提交了一个Bug报告(当然,这个错误可能是我自己的):TensorFlow Eager版本失败了,而TensorFlow静态图可以正常运行

转换到TensorFlow 2.x还需要做其他的修改,我将在下一节“该怎么办?”中总体介绍。

该怎么办?

关于转换到TensorFlow 2.x,下面是我根据自己的理解整理的F.A.Q列表。

如果我的项目使用了****tf.contrib,该怎么办?

所有关于tf.contrib内部项目命运的信息可以在这里找到:tf.contrib日落

你可能只需要安装一个新的Python包,或者将tf. instrument .something重命名为tf.something。

如果我的项目在TensorFlow 1.x中可以运行,而在2.x中无法运行了,该怎么办?

不应该出现这种情况:请再次检查转换实现是否正确,如果是,则在GitHub上提交一个Bug报告。

如果项目在静态图模式下可以运行,而在Eager模式下无法运行,该怎么办?

这是我目前遇到的问题,我已经提交了报告:TensorFlow Eager版本失败了,而TensorFlow静态图可以正常运行

现在我还不知道这是我自己的Bug,还是实际的TensorFlow Eager版本有什么问题。但是,由于我习惯于静态图的思考方式,所以我将避免使用Eager版本。

如果某个tf.方法在2.x中被删除了,该怎么办?

这个方法很可能只是被移动了。在TensorFlow 1.x 中,有很多方法的别名。而在TensorFlow 2.x中,我们的目标是(如果RFC: TensorFlow名称空间如我所愿被接受的话)删除许多别名,并将方法移动到更好的位置,以提高整体的一致性。

在RFC中,你可以找到新提议的名称空间、要删除的名称空间列表以及所有其他为增强框架的一致性(可能)要进行的更改。

另外,即将发布的转换工具可能可以正确地为你应用所有这些更新(这只是我对该转换工具的猜测,但由于这是一项简单的任务,那是很可能会出现的一个特性)。

小结

本文的写作目的是阐明TensorFlow 2.0将给框架用户带来的变化和挑战。

TensorFlow 1中的GAN实现以及到TensorFlow 2.x的转换应该可以清楚地说明使用新版本所需要的心态改变。

总的来说,我认为,TensorFlow 2.x将改进框架的质量,标准化并简化它的用法。从未见过静态图方法且习惯于使用命令式语言的新用户可能会发现,Eager模式是进入TensorFlow世界的一个很好的切入点。

不过,更新中有些部分我不喜欢(这只是我个人的观点):

  • 把重点放在Eager Execution上,并使之成为默认模式:在我看来,这似乎是一种营销手段。TensorFlow似乎是想要追赶PyTorch(默认是Eager);
  • 静态图和Eager(以及混合它们的可能性)不是1:1兼容性的,在我看来,这可能会在大型项目中造成混乱,使得项目难以维护;
  • 切换到基于Keras的方法是一项很好的举措,但它使图在Tensorboard中的可视化变得非常难看。事实上,变量和图的定义是全局的,在TensorFlow图中创建新“块”的tf.named_scope(为了共享变量更容易,每次调用Keras Model时都会调用)被图隔开,它是内部使用的,它的输入节点列表中包含所有的模型变量——这使得Tensorboard中图的可视化变得几乎没有用处,对于这样一个好工具,这真是个遗憾。

如果你喜欢这篇文章,请分享;如果文章中有什么问题/可以改进的地方,请随时告诉我。

感谢你的阅读!

查看英文原文:TensorFlow 2.0: models migration and new design

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值