1.棋子移动:
魔法世界的历史上曾经出现过一位赫赫有名的不败战神陈庆之,陈庆之以棋道悟兵法,一生身经数百战,没有一场败绩,而且没有一场不是在绝对的劣势中大胜敌军。
受此影响,魔法世界开始流行一种叫棋子移动的游戏,即有2N个棋子(N≥4)排成一行,开始位置为白子全部在左边,黑子全部在右边,例如当N=4时,棋子排列情况为:
〇〇〇〇●●●●
移动棋子的规则是:每次必须同时移动相邻两个棋子,颜色不限,可以左移也可以右移到空位上去,但不能调换两个棋子的左右位置.每次移动必须跳过若干个棋子
(不能平移),要求最后能移成黑白相间的一行棋子。例如当N=4时,最终排列情况为:
〇●〇●〇●〇●
试求出移动步骤。
题解:
这道题刚刚看到我们不难推测出这是一道递归题,而且是一道和“汉诺塔”极其相似的题。之后有的人和我一样去手算了一遍样例,但后来我发现其实不用列举太多:
根据前面我们推测出这是一道与汉诺塔相似的题,那就和“汉诺塔”一样去推测棋子移动的规律:
通过观测题目给出的样例
4,5-->9,10
8,9-->4,5
2,3-->8,9
7,8-->2,3
1,2-->7,8
把上面的分成两个一组来看,有规律: n, n + 1 --> 2 * n + 1, 2 * n + 2 和 2 * n, 2 * n + 1–>n, n + 1有了这个规律我们就只用考虑n是多少就可以了。其次让我们继续来枚举