E.
题意:求最小生成树。
Solution:
数论+生成树。
我们将尝试快速模拟 Kruskal
算法的过程。
发现在第 i
个状态,假设操作前有 A
个联通块,操作后 B
个块,那么代价等于 (A-B) * c[i]
。
考虑 w
和 v
联通等价于:w=v+k1a1+k2a2+ ... +k_{n-1}a_{n-1},k_i \in Z
。这里根据裴蜀定理得到 w mod d = v mod d
,其中 d=gcd(a1,a2, ... an)
。
时间复杂度 O(nlogn)
。
#include<bits/stdc++.h>
#define mp make_pair
#define PII pair<ll,ll>
#define pb push_back
#define vec vector
#define All(x) x.begin(),x.end()
#define INS(x) inserter(x,x.begin())
#define INF 0x3f3f3f3f
#define ll long long
using namespace std;
//Task : Atcoder abc
//Author : cqbzly
ll n,m,cost,tot;
PII A[100005];
ll gcd(ll x,ll y) {
return (y==0)?x:gcd(y,x%y);
}
int main() {
cin>>n