反演好难啊 qwq 。
∑ d = 1 n d ( ∑ i = 1 n / d ∑ j = 1 m / d i ∗ j ∗ [ gcd ( i , j ) = = 1 ] ) \sum_{d=1}^nd(\sum_{i=1}^{n/d}\sum_{j=1}^{m/d}i*j*[\gcd(i,j)==1]) ∑d=1nd(∑i=1n/d∑j=1m/di∗j∗[gcd(i,j)==1])
记 s u m ( n , m ) = ∑ i = 1 n ∑ j = 1 m i ∗ j ∗ [ gcd ( i , j ) = = 1 ] sum(n,m)=\sum_{i=1}^n\sum_{j=1}^mi*j*[\gcd(i,j)==1] sum(n,m)=∑i=1n