扎根理论编码的操作

本文详细介绍了编码在深度访谈分析中的三个关键步骤:开放式编码、关联式编码和选择式编码。开放式编码关注对访谈资料的初步概念化和抽象;关联式编码则涉及梳理和理解各概念间的关系,构建更高层次的范畴;选择式编码旨在确定核心范畴,形成扎根理论。这一过程需要反复进行,以逐步提炼和整合研究资料。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

编码是一个对于深度访谈资料中的词句、段落等片段不断进行分析概括和归纳标识的过程。

  • 开放式编码是指对访谈资料的词句和片段进行概念化、抽象化的标示。它既可以是访谈对象所使用的生动、鲜明的词语,也可以是研究人员从资料阅读中所抽象出的名词和概念。
  • 关联式编码的目的就是理清各个概念及其之间的相互关系,通过对概念之间关系的反复思考和分析,整合出更高抽象层次的范畴,并确定相关范畴的性质和维度。
  • 选择式编码的任务则是系统处理范畴之间的关系,确定核心范畴和次要范畴,从而形成建立在范畴关系基础之上的扎根理论。

以上三种编码可以按顺序、也可以交错反复进行。随着资料整理的推进,编码表被不断地综合分类,每一次都需要用新的编码将所有的访谈资料重新梳理一遍,进行再一次的排列组合。

### 扎根理论三级编码在Nvivo中的应用 #### 初级编码(Open Coding) 初级编码涉及识别、标记并记录潜在的相关事件、行为或现象。此阶段的目标是从原始资料中提取核心概念,而不预先设定任何假设。对于每一段文本,应仔细阅读并赋予描述性的标签[^1]。 ```python def open_coding(texts): codes = [] for text in texts: # 对每一部分文本进行初步解读并打上适当标签 code = interpret_text_and_tag(text) codes.append(code) return codes ``` #### 中级编码(Axial Coding) 中级编码旨在发现不同类目之间的关系模式。在此过程中,先前创建的开放代码会被重新评估,并基于它们之间存在的关联性构建更广泛的类别。重要的是保持节点独立,不将多个概念混合在同一节点下[^2]。 ```python def axial_coding(open_codes): categories = {} for code in open_codes: # 查找与其他代码的关系并将相似者分组到更高层次的分类里 category = find_relationship_among_codes(code, open_codes) if category not in categories: categories[category] = [] categories[category].append(code) return categories ``` #### 高级编码(Selective Coding) 高级编码专注于提炼出贯穿整个数据集的核心故事线——即所谓的“中心范畴”。这一步骤要求确认一个主导逻辑来解释所有其他次级范畴是如何围绕这个主要议题展开的。利用NVivo的强大主题分析能力可以加速这一过程,帮助揭示隐藏的主题和情感倾向[^3]。 ```python def selective_coding(categories): core_category = None while True: # 寻找能够统合各分类的关键要素作为最终的研究焦点 potential_core = identify_dominant_logic(categories) feedback = validate_with_data(potential_core, all_texts) if feedback == 'confirmed': core_category = potential_core break return core_category ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值