读书笔记//《数据分析之道》

出版时间:2022年
作者曾在互联网大厂做数据分析。从举例可以洞见作者的工作经历。
点评:作者在数据分析领域非常资深,尝试在书中提供一个数据分析工作框架参考。本书更适合互联网领域数据分析,对其他行业亦有参考。书本内容有点感觉是ppt的集合,辅以案例说明。不过,干货还是很多。

一、数据治理

1、什么是数据治理

数据治理是逐步实现数据价值的过程。具体来说,数据治理是指将零散的用户数据通过采集、传输、储存等一系列标准化流程变成格式规范、结构统一的数据,并构建严格规范的综合数据管控机制;对这些标准化的数据进行进一步加工分析,形成具有指导意义的业务监控报表、业务监控模型,以辅助业务方进行决策。

2、数据治理的流程

在这里插入图片描述

3、数据治理的部分岗位职责

  • 数据分析师:负责数据的即时查询和指标体系、报表体系的建设以及输出各项业务报告;
  • 数据产品经理:负责数据产品原型设计以及推动数据产品的实现和落地;
  • 数据挖掘与算法工程师:基于业务问题开发数据模型以辅助业务方进行决策。
    在这里插入图片描述

二、数据思维

1、数据思维应用场景
在这里插入图片描述

如:构建有效的监控体系和客观的评价标准,用合理的分析方法探究原因以及评价效果,综合运用统计学知识对活动效果进行评估。

2、如何培养数据思维

(1) 熟悉业务及常用的数据分析方法,最好建立自己的分析体系
在这里插入图片描述

  • 对比分析是得出数据结论最简单有效的方法。(单独出一篇说明)
  • 分群思维是贯穿数据分析全链路的分析思维。(单独出一篇说明)
  • 相关性分析师探索变量关系的方法,但是相关性不代表因果性。需要掌握必要的因果推断方法。(单独出一篇说明)

(2)面对具体问题,多问为什么,树立目标意识,找出需求背后的潜在分析点
切忌沦为业务方的“取数工具人”。要多沟通,挖掘数据需求背后的真实用意,主动提出更多数据分析,切实解决业务问题。

(3)建立标准,通过客观的标准代替主观的判断
数据分析师排查业务问题的步骤:
用假设检验,代替预设立场——>与特定标准进行比较——>排查原因——>定位问题。

(4) 基于分析结果,为业务方提出切实可行的解决方案
数据分析师提出合理建议会经历的三个阶段:给数据,给报告,给观点。给观点比较难,不仅需要熟练的分析技巧、缜密的数据思维,还需要对业务有极深的了解。

数据分析师需要避免的几种提建议的方式
在这里插入图片描述

三、数据埋点

在数据产生过程,数据分析师需要关注三个问题:
第一,用户的哪些行为会被采集到,是在客户端还是在服务器被采集到;
第二,实现用户数据采集的技术有哪些以及它们之间的异同;
第三,采集到的用户数据是如何实现上报的。

数据埋点流程:
在这里插入图片描述
埋点设计6步骤:
在这里插入图片描述

四、数据标签体系(典型:用户画像)

用户画像是数据标签体系的一种。用户画像,是把用户的多维度标签按照一定规律进行组合,以提高数据分析师的分析效率,更好地辅助运营人员进行决策。
《用户画像》 传送门

1、数据标签体系的作用
用户洞察、个性推荐、渠道优化、营销增强等。

2、数据标签的分类
从计算方式层面分类,可以分为统计类标签、规则类标签、模型类标签(如机器学习类标签)。
数据分析师负责统计类标签、规则类标签的构建和维护;算法工程师负责模型类标签的维护。
按更新时间分类:离线标签、实时标签。

数据标签可以根据不同的业务需求和业务形态进行层级分类,分类原则遵照MECE原则(相互独立、完全穷尽)

3、数据标签体系构建流程
在这里插入图片描述

五、数据指标体系

数据的核心作用之一是监控业务发展变化,发现潜在的业务问题。

1、什么是数据指标体系?
指标体系是指标与体系的结合体,是一套从多个维度拆解业务现状并有系统、有规律地组合起来的多个指标。

2、指标体系的功能?
第一,指标体系是一套标准化的衡量指标,可以监控业务的发展情况。——公司视角
第二,指标体系可以形成报表并固化下来,以减少重复工作,提高分析效率。——数据分析师视角
第三,通过指标分级治理,如果业务出现问题,通过指标拆解,迅速定位业务问题,给出业务优化方向。——业务视角

3、什么样的指标体系才是好的指标体系?
业务存在的问题都可以通过指标体系中的数据回溯、下钻和分级拆解得以暴露。
如果分析师仍然需要频繁临时取数,说明指标体系还不够完善。
指标体系往往不是设计出来,随着业务在深度和广度的发展,渐渐生长出来。

4、构建一套指标体系需要解决哪些问题?

  • 数据提前埋点
  • 统一计算口径,形成指标字典
  • 指标穷尽且相互独立,遵循MCEC原则

5、构建数据指标体系的方法论?
(以互联网行业为例)

图-数据指标体系构建的流程
在这里插入图片描述

  • OSM模型——明确业务目标,数据赋能业务。
  • O是核心kpi,S是行动策略,M是策略指标。
  • 把业务的核心kpi拆解到用户生命周期(AARRR)或者用户行为路径。(UJM)中,在整条链路中分析可以提升核心KPI的点,据此制定行动策略。
  • AARRR模型是从产品角度出发,揭示用户的生命周期。UJM模型是从用户出发,解释用户的行为路径。

栗子:GMV相关的指标体系搭建框架
在这里插入图片描述

6、如何搭建一套通用的指标体系并快速落地应用?

图-多部门配合搭建数据指标体系的流程
在这里插入图片描述

完整的指标体系搭建流程有以下7个步骤:
(1)需求收集:产品(策划)经理或者运营人员完成产品原型(策划案)或者运营方案,数据分析师根据原型(策划案)或者运营方案提炼数据需求,评估需求可行性并和需求方讨论,修改不合理需求。
(2)需求汇总及排期:数据分析师将数据需求整理成文档并根据优先级对需求进行排期。
(3)确定指标体系方案:数据分析师以OSM模型、AARRR模型、UJM模型、MECE模型作为指导思想,初步确定指标体系建设方案。
(4)确定数据埋点方案:数据分析师根据初步的指标体系建设方案设计埋点方案,同时给出字段命名规范及数据采集方案。然后,数据分析师将上述方案给到前后端进行埋点。
(5)数据采集:在数据采集阶段,数据工程师需要将前后端埋点数据送入数据仓库并进行数据清洗。
(6)搭建指标体系:在搭建指标体系之前,数据分析师需要对入库的数据进行核验,检查数据是否全,数值是否正确。然后,根据指标体系建设方案进行指标体系搭建及落地。
(7)效果评估:指标体系落地,用于监控业务现状,指导业务决策,定位业务问题,在业务方的不断反馈中逐渐完善整套指标体系。

图-通用指标体系的构建流程
在这里插入图片描述

图-AARRR模型分解业务目标
在这里插入图片描述

图-通用的一级指标
在这里插入图片描述

7、如何运用指标体系定位异动因素?
传送门

——————————————————————

再次感谢原作者!

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

陈同学2020

你的鼓励将是我创作的最大动力

¥2 ¥4 ¥6 ¥10 ¥20
输入1-500的整数
余额支付 (余额:-- )
扫码支付
扫码支付:¥2
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值