线性代数笔记18:线性变换与基变换

本文介绍了线性变换的概念,包括其性质和矩阵表示。线性变换保持向量空间的线性关系,并且在不同基下有特定的矩阵表示。讨论了线性变换的唯一性、可逆性,以及如何在不同基下表示线性变换的矩阵。此外,还提到了基变换作为特殊线性变换的重要性。
摘要由CSDN通过智能技术生成

每一个矩阵都可以看作是线性变换,矩阵乘法也是由线性变换的复合引出的。

线性变换

理解

线性变换是一种映射,对于向量来说,就是线性空间到线性空间的映射。这里不严格给出线性变换的定义,但举例来说,投影变换、反射变换、不定积分等都可以看做是线性变换。

与线性变换相对的是仿射变换,例如:

T(x)=Ax+x0 T ( x ) = A x + x 0

就是一个仿射变换,可以通俗的理解为对现象变换 Ax A x 加上了一个偏移量 x0 x 0

性质

由线性变换的性质,我们可以得到:

  1. T(0)=0,T(x)=x T ( 0 ) = 0 , T ( − x ) = − x
  2. T(c1x1+c2x2+...+cnxn)=c1T(x1)+c2T(x2)+...+cnT(xn) T ( c 1 x 1 + c 2 x 2 + . . . + c n x n ) = c 1 T ( x 1 ) + c 2 T ( x 2 ) + . . . + c n T ( x n )
  3. x1,...,xn x 1 , . . . , x n 线性相关,则 T(x1),...T(xn) T ( x 1 ) , . . . T ( x n ) 线性相关。

即线性变换保持向量空间的线性关系。

例如,线性变换总是把直线变成直线,把三角形变成三角形,把平行四边形变成平行四边形。。。

线性变换的矩阵表示

我们想用一个矩阵来表示一个向量中所有线性空间中的变换,也就是用矩阵来描述这个线性变换。

V V W 分别是数域上 n

  • 8
    点赞
  • 38
    收藏
    觉得还不错? 一键收藏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值