等式约束优化

本文探讨了等式约束优化问题,特别是凸二次规划。介绍了如何通过消除等式约束转化为无约束问题以及使用对偶方法求解。还详细讲解了等式约束的Newton方法,包括Newton方向的定义和计算,以及处理不可行初始点的情况。文章强调了直接处理等式约束有时优于转化后的无约束问题,因为它能保持问题的结构。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

介绍等式约束优化的求解。

等式约束优化问题

minf(x) min f ( x )

s.t.Ax=b s . t . A x = b

其中 f f 为二次可微凸函数,假设等式约束少于变量数,并且等式约束互相独立。假定存在一个最优解 x ,并用 p p ⋆ 表示其最优值,即:

p=inf{ f(x)|Ax=b}=f(x) p ⋆ = inf { f ( x ) | A x = b } = f ( x ⋆ )

由KKT条件,其最优解的重要条件是满足:

Ax=bf(x)+ATv=0 A x ⋆ = b ▽ f ( x ⋆ ) + A T v ⋆ = 0

对于求解等式约束问题有两种方法:

  1. 任何等式约束优化问题都可以通过消除等式约束转化为等价的无约束问题。
  2. 使用对偶方法解决。

很多时候,直接处理等式约束比转化为无约束问题要好,这是因为转化之后可能会破坏问题的结构。

等式约束凸二次规划

minf(x)=(1/2)xTPx+qTx+r min f ( x ) = ( 1 / 2 ) x T P x + q T x + r

s.t.Ax=b s . t . A x = b

此问题的最优性条件为:

Ax=bPx+q+ATv=0 A x ⋆ = b P x ⋆ + q + A T v ⋆ = 0

可以将其写成矩阵形式:

[PAAT0][xv]=[q
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值