题目链接:http://poj.org/problem?id=1265
题目主要部分翻译:
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.
你被雇佣来写一个程序来计算被那个机器人占领的区域。你可以假设这个面积是一个由格点组成多边形。但是,你的老板要求你用一个公式,一个不知道他哪找来的公式。那个公式是和那个多边形内的格点数I、多边形边上的格点数E、多边形面积A有关。不幸的是,你丢失了那个写着那个简单公式的便签,所以你最先开始的任务是去找到那个公式。
给你该机器人的走的方向。dx,dy为x方向走的单位长度和y方向走的单位长度。求出I、E、A。
典型的pick公式的应用。。
S = a / 2 + b - 1。。一个很有趣的公式。。
那么就是求边界上的格点了。。gcd(abs(a.x - b.x), abs(a.y - b.y))。
知道这些个结论就比较easy了。。
Code:
#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;
const int N = 1e2 + 5;
struct POINT
{
int x, y;
POINT(){}
POINT(int a, int b){
x = a;
y = b;
}
} p[N];
int n, k;
int cross(POINT o, POINT a, POINT b)
{
return (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x);
}
int area()
{
int ans = 0;
for(int i = 1; i < n; i ++){
ans += cross(p[0], p[i], p[i + 1]);
}
return ans;
}
int gcd(int a, int b)
{
if(b == 0) return a;
return gcd(b, a % b);
}
int OnEdge()
{
int ans = 0;
for(int i = 0; i < n; i ++){
ans += gcd(abs(p[i].x - p[i + 1].x), abs(p[i].y - p[i + 1].y));
}
return ans ;
}
void solve()
{
int s = area();
if(s < 0) s = - s;
int I = OnEdge();
int E = s / 2 + 1 - I / 2;
printf("Scenario #%d:\n%d %d %.1f\n", ++ k, E, I, s / 2.0);
}
int main()
{
// freopen("1.txt", "r", stdin);
k = 0;
int T;
bool flag = false;
scanf("%d", &T);
while(T --){
int x, y;
scanf("%d", &n);
p[0] = POINT(0, 0);
for(int i = 1; i <= n; i ++){
scanf("%d %d", &x, &y);
p[i] = POINT(p[i - 1].x + x, p[i - 1].y + y);
}
if(flag) puts("");
solve();
flag = true;
}
return 0;
}
pick公式就是这样的。。