POJ 1265 Area [格点多边形面积 pick公式]

题目链接:http://poj.org/problem?id=1265

题目主要部分翻译:

You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that simple formula for you, so your first task is to find the formula yourself.

你被雇佣来写一个程序来计算被那个机器人占领的区域。你可以假设这个面积是一个由格点组成多边形。但是,你的老板要求你用一个公式,一个不知道他哪找来的公式。那个公式是和那个多边形内的格点数I、多边形边上的格点数E、多边形面积A有关。不幸的是,你丢失了那个写着那个简单公式的便签,所以你最先开始的任务是去找到那个公式。

给你该机器人的走的方向。dx,dy为x方向走的单位长度和y方向走的单位长度。求出I、E、A。

典型的pick公式的应用。。

S = a / 2 + b  - 1。。一个很有趣的公式。。

那么就是求边界上的格点了。。gcd(abs(a.x - b.x), abs(a.y - b.y))。

知道这些个结论就比较easy了。。

Code:

#include <iostream>
#include <algorithm>
#include <cmath>
#include <cstdio>
#include <cstring>
using namespace std;

const int N = 1e2 + 5;
struct POINT
{
    int x, y;
    POINT(){}
    POINT(int a, int b){
        x = a;
        y = b;
    }
} p[N];
int n, k;

int cross(POINT o, POINT a, POINT b)
{
    return (a.x - o.x) * (b.y - o.y) - (a.y - o.y) * (b.x - o.x);
}

int area()
{
    int ans = 0;
    for(int i = 1; i < n; i ++){
        ans += cross(p[0], p[i], p[i + 1]);
    }
    return ans;
}

int gcd(int a, int b)
{
    if(b == 0) return a;
    return gcd(b, a % b);
}

int OnEdge()
{
    int  ans = 0;
    for(int i = 0; i < n; i ++){
        ans += gcd(abs(p[i].x - p[i + 1].x), abs(p[i].y - p[i + 1].y));
    }
    return ans ;
}

void solve()
{
    int s = area();
    if(s < 0) s = - s;
    int I = OnEdge();
    int E = s / 2 + 1 - I / 2;
    printf("Scenario #%d:\n%d %d %.1f\n", ++ k, E, I, s / 2.0);
}

int main()
{
//    freopen("1.txt", "r", stdin);
    k = 0;
    int T;
    bool flag = false;
    scanf("%d", &T);
    while(T --){
        int x, y;
        scanf("%d", &n);
        p[0] = POINT(0, 0);
        for(int i = 1; i <= n; i ++){
            scanf("%d %d", &x, &y);
            p[i] = POINT(p[i - 1].x + x, p[i - 1].y + y);
        }
        if(flag) puts("");
        solve();
        flag = true;
    }
    return 0;
}

pick公式就是这样的。。


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值