动态规划——背包问题(Knapsack Problem)入门

动态规划算法

应用场景-背包问题

​ 有一个背包,容量为4磅,现有如下物品:

物品重量价格
吉他(G)11500
音响(S)43000
电脑(L)32000
  1. 要求达到的目标为装入的背包的总价值最大,并且重量不超出
  2. 要求装入的物品不重复

动态规划算法介绍

  1. 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法
  2. 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解
  3. 与分治法不同的是,适用于用动态规划求解的问题,经分解得到子问题往往不是相互独立的。(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)
  4. 动态规划可以通过填表的方式来逐步推进,得到最优解

思路分析

  • 背包问题主要是指一个给定容量的背包、若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分01背包和完全背包(完全背包指的是:每种物品都有无限件可用)
  • 这里的问题属于01背包问题,即每个物品最多放一个。而无线背包可以转化为01背包
  • 算法的主要思想,利用动态规划来解决。每次遍历到第 i 个物品,根据 w[i] 和 v[i] 来确定是否需要将该物品放入背包中。即对于给定的 n 个物品,设 v[i]、w[i] 分别为第 i 个物品的价值和重量,C 为背包的容量。再令 v[i][j] 表示在前 i 个物品中能够装入容量为 j 的背包中的最大价值。则我们有下面结果
    1. v[i][0] = v[0][i] = 0;
      • 表示填入第一行 和 第一列是0
    2. w[i] > j时:v[i][j] = v[i-1][j]
      • 当准备加入新增的商品的容量大于 当前背包容量 时,就直接使用上一个单元格的策略
    3. j >= w[i]时:v[i][j] = max{v[i-1][j], v[i-1][j-w[i]] + val[i]}
      • 当准备加入的新增的商品的容量小于等于当前背包的容量,装入的方式:
      • v[i-1][j]:就是上一个单元格的装入的最大值
      • val[i]:表示当前商品的价值
      • v[i-1][j-w[i]]:装入i-1商品,到剩余空间j-w[i]的最大值

图解

填表法

  • 每一行代表当有新增物品时的分配方案
  • 每一列代表背包的容量
物品0磅1磅2磅3磅4磅
00000
吉他(G)01500(G)1500(G)1500(G)1500(G)
音响(S)01500(G)1500(G)1500(G)3000(S)
电脑(L)01500(G)1500(G)2000(L)2000(L)+1500(G)

代码演示

package com.crisp.Algorithm;

public class KnapsackProblem {
    public static void main(String[] args) {
        int[] w = {1, 4, 3};//物品的重量
        int[] val = {1500, 3000, 2000};//物品的价值
        int m = 4;//背包的容量
        int n = val.length;//物品的个数

        //创建二维数组
        //v[i][j] 表示在前 i 个物品中能够装入容量为 j 的背包中的最大价值
        int[][] v = new int[n + 1][m + 1];

        //记录路径
        int[][] path = new int[n + 1][m + 1];

        //初始化第一行和第一列
        for (int i = 0; i < v.length; ++i) {
            v[i][0] = 0;
        }
        for (int i = 0; i < v.length; ++i) {
            v[0][i] = 0;
        }

        //动态规划
        for (int i = 1; i < v.length; ++i) { //不处理第一行
            for (int j = 1; j < v[0].length; ++j) {  //不处理第一列
                if (w[i - 1] > j) {
                    v[i][j] = v[i - 1][j];
                } else {
                    // v[i][j] = max(v[i-1][j], val[i-1]+v[i-1][j-w[i-1]]);
                    if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
                        v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
                        path[i][j] = 1;
                    } else {
                        v[i][j] = v[i - 1][j];
                    }
                }
            }
        }

        //输出规划表
        for (int i = 0; i < v.length; ++i) {
            for (int j = 0; j < v[i].length; ++j) {
                System.out.printf("%d\t", v[i][j]);
            }
            System.out.println();
        }

        int i = path.length - 1;//行的最大下标
        int j = path[0].length - 1;//列的最大下标
        while (i > 0 && j > 0) {//从path的最后开始找
            if (path[i][j] == 1) {
                System.out.printf("第 %d 个商品放入背包\n", i);
                j -= w[i - 1];
            }
            i--;
        }
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

三月江东

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值