动态规划算法
应用场景-背包问题
有一个背包,容量为4磅,现有如下物品:
物品 | 重量 | 价格 |
---|---|---|
吉他(G) | 1 | 1500 |
音响(S) | 4 | 3000 |
电脑(L) | 3 | 2000 |
- 要求达到的目标为装入的背包的总价值最大,并且重量不超出
- 要求装入的物品不重复
动态规划算法介绍
- 动态规划(Dynamic Programming)算法的核心思想是:将大问题划分为小问题进行解决,从而一步步获取最优解的处理算法
- 动态规划算法与分治算法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解
- 与分治法不同的是,适用于用动态规划求解的问题,经分解得到子问题往往不是相互独立的。(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解)
- 动态规划可以通过填表的方式来逐步推进,得到最优解
思路分析
- 背包问题主要是指一个给定容量的背包、若干具有一定价值和重量的物品,如何选择物品放入背包使物品的价值最大。其中又分01背包和完全背包(完全背包指的是:每种物品都有无限件可用)
- 这里的问题属于01背包问题,即每个物品最多放一个。而无线背包可以转化为01背包
- 算法的主要思想,利用动态规划来解决。每次遍历到第 i 个物品,根据 w[i] 和 v[i] 来确定是否需要将该物品放入背包中。即对于给定的 n 个物品,设 v[i]、w[i] 分别为第 i 个物品的价值和重量,C 为背包的容量。再令
v[i][j]
表示在前 i 个物品中能够装入容量为 j 的背包中的最大价值。则我们有下面结果v[i][0] = v[0][i] = 0;
- 表示填入第一行 和 第一列是0
- 当
w[i] > j
时:v[i][j] = v[i-1][j]
- 当准备加入新增的商品的容量大于 当前背包容量 时,就直接使用上一个单元格的策略
- 当
j >= w[i]
时:v[i][j] = max{v[i-1][j], v[i-1][j-w[i]] + val[i]}
- 当准备加入的新增的商品的容量小于等于当前背包的容量,装入的方式:
v[i-1][j]
:就是上一个单元格的装入的最大值val[i]
:表示当前商品的价值v[i-1][j-w[i]]
:装入i-1
商品,到剩余空间j-w[i]
的最大值
图解
填表法
- 每一行代表当有新增物品时的分配方案
- 每一列代表背包的容量
物品 | 0磅 | 1磅 | 2磅 | 3磅 | 4磅 |
---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | |
吉他(G) | 0 | 1500(G) | 1500(G) | 1500(G) | 1500(G) |
音响(S) | 0 | 1500(G) | 1500(G) | 1500(G) | 3000(S) |
电脑(L) | 0 | 1500(G) | 1500(G) | 2000(L) | 2000(L)+1500(G) |
代码演示
package com.crisp.Algorithm;
public class KnapsackProblem {
public static void main(String[] args) {
int[] w = {1, 4, 3};//物品的重量
int[] val = {1500, 3000, 2000};//物品的价值
int m = 4;//背包的容量
int n = val.length;//物品的个数
//创建二维数组
//v[i][j] 表示在前 i 个物品中能够装入容量为 j 的背包中的最大价值
int[][] v = new int[n + 1][m + 1];
//记录路径
int[][] path = new int[n + 1][m + 1];
//初始化第一行和第一列
for (int i = 0; i < v.length; ++i) {
v[i][0] = 0;
}
for (int i = 0; i < v.length; ++i) {
v[0][i] = 0;
}
//动态规划
for (int i = 1; i < v.length; ++i) { //不处理第一行
for (int j = 1; j < v[0].length; ++j) { //不处理第一列
if (w[i - 1] > j) {
v[i][j] = v[i - 1][j];
} else {
// v[i][j] = max(v[i-1][j], val[i-1]+v[i-1][j-w[i-1]]);
if (v[i - 1][j] < val[i - 1] + v[i - 1][j - w[i - 1]]) {
v[i][j] = val[i - 1] + v[i - 1][j - w[i - 1]];
path[i][j] = 1;
} else {
v[i][j] = v[i - 1][j];
}
}
}
}
//输出规划表
for (int i = 0; i < v.length; ++i) {
for (int j = 0; j < v[i].length; ++j) {
System.out.printf("%d\t", v[i][j]);
}
System.out.println();
}
int i = path.length - 1;//行的最大下标
int j = path[0].length - 1;//列的最大下标
while (i > 0 && j > 0) {//从path的最后开始找
if (path[i][j] == 1) {
System.out.printf("第 %d 个商品放入背包\n", i);
j -= w[i - 1];
}
i--;
}
}
}