动态规划是一种数学方法,用于解决具有递归结构的决策问题,特别是那些涉及顺序决策的问题。在MATLAB中实现动态规划,可以通过定义状态变量、决策变量、状态转移方程以及目标函数来完成。以下是具体的案例分析。
案例分析:项目资源分配优化
假设一个公司有几个项目同时运行,每个项目都需要分配一定数量的资源,如资金、人员等,以完成项目。公司的目标是最大化所有项目的总利润,每个项目的利润与投入的资源量呈非线性关系。资源是有限的,因此需要通过动态规划来优化资源的分配。
步骤 1: 定义状态和决策变量
- 状态变量:
x(i, j)
表示在处理到第i
个项目时还剩下j
单位的资源。 - 决策变量:
u(i, j)
表示决定分配给第i
个项目j
单位资源的结果。
步骤 2: 目标函数和状态转移
- 目标函数:最大化总利润。
- 状态转移方程:
x(i, j) = x(i-1, j) + u(i, j)
,表示在给第i
个项目分配资源后的剩余资源。
步骤 3: 动态规划的递归解法
- 递归公式:
F(i, j) = max(F(i-1, j-k) + profit(i, k) for all k <= j)
,这里profit(i, k)
是给第i
个项目分配<