Description
Data Constraint
Solution
我们发现答案就是每个团伙被监视到的概率之和。
正难则反。我们考虑每个团伙不被监视到的概率。若一个团伙不被监视,那么该团伙一定可以和布控的教室构成一个凸包。所以我们枚举团伙,将所有教室极角排序,然后枚举其中一个教室,另一个指针右移,计算出这两个教室必选而教室与团伙夹角之外的点都不能选的概率。时间复杂度O(N*MlogM).
Code
#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<algorithm>
#define db double
#define ll long long
using namespace std;
const ll maxn=1e3+5;
struct code{
ll x,y;
db z;
}a[maxn],b[maxn];
ll xa[maxn],ya[maxn];
ll n,m,i,t,j,k,l,mx;
db x,y,z,sum,ans,p[maxn],q,p1[maxn],s1[maxn],xx,p2[maxn];
bool cmp(code x,code y){
return x.z<y.z;
}
bool pan(ll x,ll y,ll xx,ll yy){
return x*yy>=xx*y;
}
int main(){
// freopen("data.in","r",stdin);
scanf("%lld%lld",&n,&m);
for (i=1;i<=n;i++)
scanf("%lld%lld",&xa[i],&ya[i]);sum=1;ans=n;s1[m+1]=1;
for (i=1;i<=m;i++)
scanf("%lld%lld%lf",&a[i].x,&a[i].y,&a[i].z),sum*=(1-a[i].z),p1[i]=sum;
p1[0]=1;
for (i=m;i>=1;i--)
s1[i]=s1[i+1]*(1-a[i].z);
ans-=n*sum;
for (i=1;i<=m;i++)
ans-=n*a[i].z*p1[i-1]*s1[i+1];
for (i=1;i<=n;i++){
q=ans;
for (j=1;j<=m;j++)
x=a[j].x-xa[i],y=a[j].y-ya[i],b[j].z=atan2(y,x),b[j].x=j;
sort(b+1,b+m+1,cmp);k=2;
while (pan(a[b[m].x].x-xa[i],a[b[m].x].y-ya[i],a[b[k].x].x-xa[i],a[b[k].x].y-ya[i]) && k!=m) k++;
p2[k]=1;mx=k;
for (j=k-1;j>=1;j--)
p2[j]=p2[j+1]*(1-a[b[j].x].z);
for (j=k+1;j<=m;j++)
p2[j]=p2[j-1]*(1-a[b[j-1].x].z);
k=2;y=0;
for (j=1;j<=m;j++)
p1[j]=p1[j-1]*(1-a[b[j].x].z);
for (j=m;j>=1;j--)
s1[j]=s1[j+1]*(1-a[b[j].x].z);
x=s1[2];
for (j=1;j<m;j++)
p[j]=p1[j-1]*s1[j+2]*a[b[j].x].z*a[b[j+1].x].z;
p[m]=a[b[m].x].z*a[b[1].x].z;
for (j=2;j<m;j++)
p[m]=p[m]*(1-a[b[j].x].z);xx=x;
for (j=1;j<=m;j++){
z=y;y*=a[b[j].x].z;
while (pan(a[b[j].x].x-xa[i],a[b[j].x].y-ya[i],a[b[k].x].x-xa[i],a[b[k].x].y-ya[i]) && k!=j){
x=(j<k)?p1[j-1]*s1[k+1]:p2[j]*p2[k+1];z+=x*a[b[k].x].z,y+=x*a[b[k].x].z*a[b[j].x].z,k=k%m+1;
}
ans-=y;
if (k!=j+1) y-=p[j];
else{
ans=q-1;
break;
}
y=z*(1-a[b[j].x].z);
}
}
printf("%.9lf\n",ans);
}