代码随想录算法训练营|977.有序数组的平方 209.长度最小的子数组 59.螺旋矩阵II

977.有序数组的平方

class Solution {
    public int[] sortedSquares(int[] nums) {
        /*
        题目给出了一个非递减顺序排序的数组,这个数组明显符合以下规律:从最大值负数开始往左的平方呈递增,从最小正值开始往右平方呈递增,由此我采用双指针的方式,一个指针放置于数组开头,一个指针放置于末尾,此时首指针代表最小负数,它与末尾指针的平方竞争最大平方数。
        */
        int n=nums.length;
        int left=0;
        int right=n-1;
        int[] sortedSquares=new int[n];
        for(int i=n-1;i>=0;--i){
            if(nums[right]*nums[right]>nums[left]*nums[left]){
                sortedSquares[i]=nums[right]*nums[right];
                --right;
            }else{
                sortedSquares[i]=nums[left]*nums[left];
                ++left;
            }   
        }
        return sortedSquares;
    }
}

209.长度最小的子数组

本题是一道连续子数组的问题,与字符串中字串问题较为相似。

首先,可以用暴力方法进行全部子数组的匹配,这个时候的时间复杂度为n方。

更优的解法为滑动窗口方法(本质上是双指针),sum与target的实时关系是窗口扩大和缩小的条件,并且保证扩大窗口时只能移动有边界,缩小窗口只能移动左边界,这样避免了暴力方法中很多无效的匹配,最终达到n的时间复杂度。

class Solution {
    public int minSubArrayLen(int target, int[] nums) {
        int left=0;
        int sum=0;
        int len=Integer.MAX_VALUE;
        for (int right=0;right<nums.length;right++){
            sum+=nums[right];
            while(sum>=target){
                if (right-left+1<len){
                    len=right-left+1;
                }
                sum-=nums[left++];
            }
        }
        return len==Integer.MAX_VALUE?0:len;
    }
}

59. 螺旋矩阵 II

class Solution {
    public int[][] generateMatrix(int n) {
        /*
        本题中,要按照螺旋矩阵的排列顺序将1到n方元素依次填入数据,在这个过程需要明确填入数组的下标的顺序。
        由题意可知螺旋数组按顺时针顺序依次填满正方形四条边,在填入数据时为了便于设置边界条件,应该尽量保证每条边填入相同数量数据,在枚举各情况后可以得出需要循环的圈数为n/2。
        */
        int[][] generateMatrix=new int[n][n];
        int head=0;//设置上界
        int tail=n-1;//设置下届
        int loop=n/2;
        int count=1;
        while(loop-->0){
            for(int i=head;i<tail;i++){
                generateMatrix[head][i]=count++;
            }
            for(int i=head;i<tail;i++){
                generateMatrix[i][tail]=count++;
            }
            for(int i=tail;i>head;i--){
                generateMatrix[tail][i]=count++;
            }
            for(int i=tail;i>head;i--){
                generateMatrix[i][head]=count++;
            }
            --tail;//下届前移
            ++head;//上界后移
        }
        if(n%2!=0)
            generateMatrix[n/2][n/2]=count;
        return generateMatrix;
    }
}

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值