class Solution {
public int[] sortedSquares(int[] nums) {
/*
题目给出了一个非递减顺序排序的数组,这个数组明显符合以下规律:从最大值负数开始往左的平方呈递增,从最小正值开始往右平方呈递增,由此我采用双指针的方式,一个指针放置于数组开头,一个指针放置于末尾,此时首指针代表最小负数,它与末尾指针的平方竞争最大平方数。
*/
int n=nums.length;
int left=0;
int right=n-1;
int[] sortedSquares=new int[n];
for(int i=n-1;i>=0;--i){
if(nums[right]*nums[right]>nums[left]*nums[left]){
sortedSquares[i]=nums[right]*nums[right];
--right;
}else{
sortedSquares[i]=nums[left]*nums[left];
++left;
}
}
return sortedSquares;
}
}
本题是一道连续子数组的问题,与字符串中字串问题较为相似。
首先,可以用暴力方法进行全部子数组的匹配,这个时候的时间复杂度为n方。
更优的解法为滑动窗口方法(本质上是双指针),sum与target的实时关系是窗口扩大和缩小的条件,并且保证扩大窗口时只能移动有边界,缩小窗口只能移动左边界,这样避免了暴力方法中很多无效的匹配,最终达到n的时间复杂度。
class Solution {
public int minSubArrayLen(int target, int[] nums) {
int left=0;
int sum=0;
int len=Integer.MAX_VALUE;
for (int right=0;right<nums.length;right++){
sum+=nums[right];
while(sum>=target){
if (right-left+1<len){
len=right-left+1;
}
sum-=nums[left++];
}
}
return len==Integer.MAX_VALUE?0:len;
}
}
class Solution {
public int[][] generateMatrix(int n) {
/*
本题中,要按照螺旋矩阵的排列顺序将1到n方元素依次填入数据,在这个过程需要明确填入数组的下标的顺序。
由题意可知螺旋数组按顺时针顺序依次填满正方形四条边,在填入数据时为了便于设置边界条件,应该尽量保证每条边填入相同数量数据,在枚举各情况后可以得出需要循环的圈数为n/2。
*/
int[][] generateMatrix=new int[n][n];
int head=0;//设置上界
int tail=n-1;//设置下届
int loop=n/2;
int count=1;
while(loop-->0){
for(int i=head;i<tail;i++){
generateMatrix[head][i]=count++;
}
for(int i=head;i<tail;i++){
generateMatrix[i][tail]=count++;
}
for(int i=tail;i>head;i--){
generateMatrix[tail][i]=count++;
}
for(int i=tail;i>head;i--){
generateMatrix[i][head]=count++;
}
--tail;//下届前移
++head;//上界后移
}
if(n%2!=0)
generateMatrix[n/2][n/2]=count;
return generateMatrix;
}
}