【学习目标】
- 理解Unsloth的核心优化原理与基础实践;
- 掌握基于Unsloth的高效微调工作流。
【知识储备】
1. Unsloth简介
Unsloth是一个专为大型语言模型(LLM)设计的微调框架,旨在提高微调效率并减少显存占用。 它通过手动推导计算密集型数学步骤并手写 GPU 内核,实现了无需硬件更改即可显著加快训练速度。
主要功能点:
-
高效微调:Unsloth通过深度优化,使 LLM 的微调速度提高 2-5 倍,显存使用量减少约 80%,且准确度无明显下降。
-
广泛的模型支持:目前支持的模型包括目前各类主流模型,用户可以根据需求适合的模型进行微
调。
-
兼容性:Unsloth与HuggingFace生态兼容,用户可以轻松将其与 traformers、peft、trl 等库结合,实现模型的全参微调(full)、监督微调(SFT)和广义强化学习优化(GRPO)、基于人类反馈的奖励建模(包括DPO、ORPO、KTO等方法)、持续预训练(continued pretraining)、文本补全(text completion)以及其他前沿训练方法。
-
内存优化: 通过 4 位和 16 位的 QLoRA/LoRA 微调,unsloth 显著了显存占用,使得在资源受限的环境中也能大的微调。
Unsloth核心优势:
-
Unsloth简化了整个微调工作流程,包括模型加载、量化、训练、评估、运行、保存、导出,以及与推理引擎(如Ollama、llama.cpp和vLLM)的集成;
-
Unsloth相比传统方法,Unsloth 能够在更短的时间内、更少的显存消耗完成微调任务,节省时间及硬件成本;
-
Unsloth定期与Huggingface、Google和Meta团队合作,以修复LLM训练和模型中的错误(例如,之前有报告有为Gemma 3和Phi-4所做的错误排查工作)。因此,在使用Unsloth进行模型微调时能看到最准确的结果。
-
开源免费: Unsloth提供开源版本,用户可以在 Google Colab 或 Kaggle Notebooks 上免费试用,方便上手体验。
总的来说,unsloth 为大型语言模型的微调提供了高效、低成本的解决方案,适合希望在有限资源下进行模型微调的开发者和研究人员。
【任务实施】
1. 运行环境要求
1.1、硬件环境
序 | 名称 | 建议配置 |
---|---|---|
1 | CPU | Intel I7 |
2 | 显卡 | NVIDIA GeForce RTX 4090 |
3 | 内存 | 16G |
4 | 系统 | Ubuntu20.04 + |
注:根据微调的模型参数及量化方法不同,显存要求也会不一样,参考值如下:
参数量 | QLoRA (4-bit) | LoRA (16-bit) |
---|---|---|
3B | 3.5 GB | 8 GB |
7B | 5 GB | 19 GB |
8B | 6 GB | 22 GB |
9B | 6.5 GB | 24 GB |
11B | 7.5 GB | 29 GB |
14B | 8.5 GB | 33 GB |
27B | 22 GB | 64 GB |
32B | 26 GB | 76 GB |
40B | 30 GB | 96 GB |
70B | 41 GB | 164 GB |
81B | 48 GB | 192 GB |
90B | 53 GB | 212 GB |
405B | 237 GB | 950 GB |
1.2、软件环境
序 | 名称 | 版本 |
---|---|---|
1 | Python | 3.10+ |
2 | CUDA | 12.1+ |
3 | JupyterLab | 3.5+ |
2. Unsloth安装
2.1、创建并配置虚拟环境
打开一个新的命令行终端,创建Conda新环境,名称可自定义,这里以"unsloth"为例:
$ conda create -n unsloth python=3.11 ipykernel -y
激活新建的环境:
$ conda activate unsloth
激活后,终端提示符通常会显示环境名称(unsloth),表示您已在该环境当中。
将unsloth
虚拟环境加入到Jupyterlab的内核中,以便后续.ipynb
文档可以选择该环境运行:
$ python -m ipykernel install --user --name=unsloth --display-name "unsloth"
运行后,点击右上角内核切换按钮,进行内核切换,查看是否有出现unsloth
内核,如果没有请在菜单栏重启内核再操作:
2.2、Unsloth安装
In [ ]:
import sys PYTHON_PATH=sys.executable print(PYTHON_PATH)
In [ ]:
%%capture !{PYTHON_PATH} -m pip install unsloth modelscope ipywidgets tensorboard
- %%capture:隐藏命令的输出,避免安装过程中的冗长日志刷屏。但注意观察右上角的运行状态,显示"忙碌",请耐心等待。
如果是开发环境,可以继续运行以下命令,从 GitHub 仓库安装Unsloth的最新开发版(可能包含未发布的修复或功能)。
In [ ]:
!{PYTHON_PATH} -m pip install \ --force-reinstall \ --no-cache-dir \ --no-deps \ git+https://github.com/unslothai/unsloth.git
2.3、验证Unsloth
运行以下命令查看Unsloth的安装情况 ,如果安装成功,会显示版本号等信息。
In [ ]:
!{PYTHON_PATH} -m pip show unsloth
3. 通过Unsloth进行Qwen2.5-VL模型推理
3.1、Qwen多模态模型下载
通过ModelScope SDK将Qwen2.5-VL多模态模型下载到指定目录,使用的是7B经过指令微调后的模型。
In [ ]:
import os from modelscope import snapshot_download # 定义基座模型以及模型存放目录 MODEL_NAME_OR_PATH = "models/Qwen2.5-VL-7B-Instruct" BASE_MODEL = "unsloth/Qwen2.5-VL-7B-Instruct" # 如目录不存在,则下载模型 if not os.path.exists(MODEL_NAME_OR_PATH): snapshot_download(BASE_MODEL, local_dir=MODEL_NAME_OR_PATH) # 目录已存在,打印文件列表 else: print("模型已存在,跳过下载") files = [item for item in os.listdir(MODEL_NAME_OR_PATH) if not item.startswith('.')] for file in files: print(file)
3.2. 导入相关依赖库
In [ ]:
from unsloth import FastVisionModel import torch from PIL import Image, ImageOps from IPython.display import display from transformers import TextStreamer
3.3、加载模型和分词器
In [ ]:
model, tokenizer = FastVisionModel.from_pretrained( model_name=MODEL_NAME_OR_PATH, max_seq_length=2048, dtype=None, load_in_4bit=True, load_in_8bit=False, full_finetuning=False, )
3.4、微调前的模型推理
将推理过程封装成一个函数,方便后续多次调用,代码如下:
In [ ]:
def inference(text, image_file, system_prompt = None): """ 推理函数 Args text: 输入的文本 image_file: 图片文件路径 system_prompt: 系统提示语,默认为None """ # 显示图片 image = Image.open(image_file) image = ImageOps.exif_transpose(image) display(image) # 将模型切换到推理模式(会关闭 dropout 等训练专用层,优化推理速度) FastVisionModel.for_inference(model) # 构造符合ChatML风格的输入消息 messages = [] if system_prompt: messages.append({"role": "system", "content": [{"type":"text", "text": system_prompt}]}) messages = [ {"role": "user", "content": [ {"type": "image"}, {"type": "text", "text": text} ]} ] # 将messages转换为模型所需的对话格式字符串 input_text = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True) # 图像会被编码为视觉特征向量,文本按正常分词流程处理 # 输出包含input_ids(文本)、pixel_values(图像)等键的字典 model_inputs = tokenizer( text=input_text, images=image, padding=True, add_special_tokens=False, return_tensors="pt" ) model_inputs = model_inputs.to(model.device) # 通过TextStreamer实现流式输出 model.generate( **model_inputs, max_new_tokens=512, use_cache = True, temperature = 1.5, min_p = 0.1, streamer=TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True), )
函数编写完成后,现在我们来先传递一个问题、一张图片给函数,看看Unsloth框架的模型推理效果。
In [ ]:
inference(text="图片表达了什么?" , image_file="assets/candy.jpg")
那么在进行微调前,我们首先验证下原模型Qwen2.5-VL,对含有数学公式的图片识别效果怎么样,同样调用上面的推理函数inference:
In [ ]:
inference( text="为图片生成LaTeX表达式", image_file="assets/demo_pic_1.jpg", system_prompt="你是一个LaText OCR助手,目标是读取用户输入的照片,转换成LaTex公式" )
观察模型生成的结果,将该结果通过LaTeX公式生成器验证下,看是否正确,同时记录起来供后续做对比。
对比两者,可以发现模型虽然在提示词的作用下,发挥作用,但是回答的并不正确。但下来我们需要对它进行微调,使其更适应处理复杂数学公式。
4. 通过Unsloth微调Qwen2.5-VL实现复杂数学公式的OCR
4.1、微调数据集的准备
通过huggingface datasets库下载数据集:
In [ ]:
from datasets import load_dataset # 定义数据集名称及保存路径 dataset_name = "unsloth/LaTeX_OCR" dataset_dir = "datasets/LaTeX_OCR" exist = os.path.exists(dataset_dir) dataset = load_dataset(dataset_name, split="train", cache_dir=dataset_dir ) if not exist: print(f"数据集已下载保存到{dataset_dir},共 {len(dataset)} 条样本") else: print(f"数据集已存在,已从{dataset_dir}加载数据集")
数据集已存在,已从datasets/LaTeX_OCR加载数据集
让我们来简单了解一下这个数据集。我们看一看第三张图片是什么,以及对应的标题是什么。
In [3]:
dataset[2]["image"]
Out[3]:
In [4]:
dataset[2]["text"]
Out[4]:
'H ^ { \\prime } = \\beta N \\int d \\lambda \\biggl \\{ \\frac { 1 } { 2 \\beta ^ { 2 } N ^ { 2 } } \\partial _ { \\lambda } \\zeta ^ { \\dagger } \\partial _ { \\lambda } \\zeta + V ( \\lambda ) \\zeta ^ { \\dagger } \\zeta \\biggr \\} \\ .'
我们运行下一行代码,直接在JupyterLab中渲染上述dataset[2]["text"]
的LaTeX表达式,看是否与图片一致:
In [5]:
from IPython.display import display, Math latex = dataset[2]["text"] display(Math(latex))
H′=βN∫dλ{12β2N2∂λζ†∂λζ+V(λ)ζ†ζ} .H′=βN∫dλ{12β2N2∂λζ†∂λζ+V(λ)ζ†ζ} .
可以发现与原图的公式一模型一样。
那么了解完数据集结构之后,我们需要将这些数据格式化成Qwen2.5-VL需要的Json格式(本质上所有视觉微调任务都是类似ChatML格式,ChatML格式仅仅是sharegpt格式的一种特殊情况),如下所示:
[ { "role": "user", "content": [{"type": "text", "text": Q}, {"type": "image", "image": image} ] }, { "role": "assistant", "content": [{"type": "text", "text": A} ] }, ]
定义数据预处理函数data_process
,目的是处理数据集的每条数据,将其格式化成Qwen2.5-VL需要的Json格式:
In [ ]:
instruction = "为图片生成LaTeX表达式" def data_process(sample): conversation = [ { "role": "user", "content" : [ {"type" : "text", "text" : instruction}, {"type" : "image", "image" : sample["image"]} ] }, { "role" : "assistant", "content" : [ {"type" : "text", "text" : sample["text"]} ] }, ] return { "messages" : conversation }
调用数据处理预函数data_process
,批量将所有数据格式化为微调输入格式,返回给新的变量converted_dataset:
In [ ]:
converted_dataset = [data_process(sample) for sample in dataset]
我们展示下经过格式化后的首条数据内容:
In [ ]:
converted_dataset[0]
4.2、LoRA微调配置
In [ ]:
model = FastVisionModel.get_peft_model( model, finetune_vision_layers = True, finetune_language_layers = True, finetune_attention_modules = True, finetune_mlp_modules = True, # target_modules = ["q_proj", "k_proj", "v_proj", "o_proj", "gate_proj", "up_proj", "down_proj"], r = 16, lora_alpha = 16, lora_dropout = 0, bias = "none", use_gradient_checkpointing="unsloth", random_state = 3407, use_rslora = False, loftq_config = None, )
4.3、训练参数配置
In [ ]:
from trl import SFTTrainer, SFTConfig from unsloth.trainer import UnslothVisionDataCollator from unsloth import is_bf16_supported from datetime import datetime output_dir = f"outputs/exp_{datetime.now().strftime('%Y%m%d_%H%M')}" # 将模型切换到训练模式 FastVisionModel.for_training(model) trainer = SFTTrainer( model = model, tokenizer = tokenizer, data_collator = UnslothVisionDataCollator(model, tokenizer), train_dataset = converted_dataset, args = SFTConfig( output_dir = output_dir, per_device_train_batch_size = 2, gradient_accumulation_steps = 4, warmup_steps = 5, max_steps = 10, # num_train_epochs = 2, learning_rate = 2e-4, fp16 = not is_bf16_supported(), bf16 = is_bf16_supported(), report_to = "tensorboard", logging_steps = 5, logging_dir=output_dir, optim = "adamw_8bit", weight_decay = 0.01, lr_scheduler_type = "linear", seed = 3407, remove_unused_columns = False, dataset_text_field = "", dataset_kwargs = {"skip_prepare_dataset": True}, dataset_num_proc = 4, max_seq_length = 2048, ), )
4.4、启动训练
打印当前GPU显存信息:
In [ ]:
# 获取索引为0的GPU设备的详细属性 gpu_stats = torch.cuda.get_device_properties(0) # 返回PyTorch当前预留的显存峰值 start_gpu_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) # GPU的物理显存总量 max_memory = round(gpu_stats.total_memory / 1024 / 1024 / 1024, 3) print(f"GPU = {gpu_stats.name}.") print(f"1)最大显存 = {max_memory} GB.") print(f"2)预留 {start_gpu_memory} GB 的显存.")
调用train()开始训练:
In [ ]:
trainer_stats = trainer.train()
显示最终内存和时间统计:
In [ ]:
used_memory = round(torch.cuda.max_memory_reserved() / 1024 / 1024 / 1024, 3) used_memory_for_lora = round(used_memory - start_gpu_memory, 3) used_percentage = round(used_memory / max_memory * 100, 3) lora_percentage = round(used_memory_for_lora / max_memory * 100, 3) print(f"训练耗时:{trainer_stats.metrics['train_runtime']}秒.") print( f"训练耗时:{round(trainer_stats.metrics['train_runtime']/60, 2)}分钟." ) print(f"峰值预留显存 = {used_memory} GB.") print(f"LoRA训练专用显存峰值 = {used_memory_for_lora} GB.") print(f"峰值预留显存占总显存比例 = {used_percentage} %.") print(f"LoRA训练显存占总显存比例 = {lora_percentage} %.")
4.5、微调后结果分析
指定训练日志所在目录,调用tensorboard命令启动,会在--port指定的端口启动一个可视化WEB服务,在浏览器中打开 http://localhost:6006
(如果是云服务器的话,根据IP或映射访问) 即可查看可视化结果。
In [ ]:
!tensorboard --logdir {output_dir} --port 6006
运行以上命令后,打开浏览器访问,如果损失率没有稳定下降,需要调整训练参数重新开始训练。
4.6、模型微调后的推理
现在开始运行微调后的模型,使用相同的推理函数、相同的图片以及提示词:
In [ ]:
inference( text="为图片生成LaTeX表达式", image_file="assets/demo_pic_1.jpg", system_prompt="你是一个LaText OCR助手,目标是读取用户输入的照片,转换成LaTex公式" )
将输出的结果拷贝到LaTeX公式生成器验证下:
继续与推理前的结果对比,可以发现经过微调后的模型,生成的结果更加接近、符合预期。但由于训练步数/轮次太少,因此生成的结果还并不能完全正确,感兴趣的大家可以继续增大训练轮次,但时间会久些。
4.7、保存微调模型
将最终模型保存为LoRA适配器,可以使用Huggingface的save_pretrained方法进行本地保存,同时也要把分词器保存。
In [ ]:
model.save_pretrained(output_dir) tokenizer.save_pretrained(output_dir) print(f"LoRA权重文件已保存在:{output_dir}")
但上述代码只是保存了LoRA适配器,而不是完整的模型,通过以下代码保存为完整的float16精度模型。该精度的模型可以使用vLLM、transformers等工具进行加载推理。
In [ ]:
new_model_dir = "models/Qwen2.5-VL-7B-LaTeXOCR" model.save_pretrained_merged( new_model_dir, tokenizer, save_method="merged_16bit", ) print(f"模型已合并并保存到:{new_model_dir}")
model.save_pretrained_merged
方法会逐层检查基础模型,并去huggingface下载相应的基础模型,所以尽量开启HF国内镜像源或代理,不然会抵账,下载也需要点时间。
合并保存完成后,观察models/Qwen2.5-VL-7B-LaTeXOCR
目录,生成了以下文件:
到此,我们使用Qwen2.5-VL多模态基座模型,通过Unsloth的QLoRA微调方法,成功训练了第一个模型,让其可以识别LaTeX公式。让你对Unsloth有个初始的认识,更多其它模型的训练方法,请继续往下实战。