很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。
这让很多学生很反感。
不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。
这让很多学生很反感。
不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。
在每个测试的第一行,有两个正整数 N 和 M ( 0<N<=200000,0<M<5000 ),分别代表学生的数目和操作的数目。
学生ID编号分别从1编到N。
第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。
接下来有M行。每一行有一个字符 C (只取'Q'或'U') ,和两个正整数A,B。
当C为'Q'的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。
当C为'U'的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。
5 6 1 2 3 4 5 Q 1 5 U 3 6 Q 3 4 Q 4 5 U 2 9 Q 1 5
5 6 5 9
这是一道线段树的裸题,和HDU1166(敌兵布阵)不一样,这道题最好用线段树,因为数据量较大,而且是区间最值问题,树状数组普遍用于解决区间和问题。具体请看模板:
#include <stdio.h>
#define inf 0x3f3f3f3f
#define Max(x, y) ((x)>(y)?(x):(y))
const int maxn = (1<<20);
struct Node{
int left;
int right;
int value;
}node[maxn];
int father[maxn];
void Build(int i, int l, int r) {
node[i].left = l;
node[i].right = r;
node[i].value = 0;
if(l == r) {
father[l] = i;
return ;
}
Build((i<<1), l, (l+r)/2);
Build((i<<1)+1, 1+(l+r)/2, r);
}
void UpdateMax(int ri) {
if(ri == 1) return ;
int fi = ri/2;
int a = node[fi<<1].value;
int b = node[(fi<<1)+1].value;
node[fi].value = Max(a, b);
UpdateMax(fi);
}
int mx = -inf;
void Query(int i, int l, int r) {
if(node[i].left == l && node[i].right == r) {
mx = Max(mx, node[i].value);
return ;
}
i = (i<<1);
if(l <= node[i].right) {
if(r <= node[i].right)
Query(i, l, r);
else
Query(i, l, node[i].right);
}
i++;
if(r >= node[i].left) {
if(l >= node[i].left)
Query(i, l, r);
else
Query(i, node[i].left, r);
}
return ;
}
int main() {
int N, M;
int l, r, v;
while(~scanf("%d %d", &N, &M)) {
Build(1, 1, N);
for(int i = 1; i <= N; i++) {
scanf("%d", &v);
node[father[i]].value = v;
UpdateMax(father[i]);
}
char op[5];
while(M--) {
scanf("%s", op);
if(op[0] == 'Q') {
scanf("%d %d", &l, &r);
mx = -inf;
Query(1, l, r);
printf("%d\n", mx);
}
else {
scanf("%d %d", &l, &v);
node[father[l]].value = v;
UpdateMax(father[l]);
}
}
}
return 0;
}