HDU 1754 I Hate It

很多学校流行一种比较的习惯。老师们很喜欢询问,从某某到某某当中,分数最高的是多少。 
这让很多学生很反感。 

不管你喜不喜欢,现在需要你做的是,就是按照老师的要求,写一个程序,模拟老师的询问。当然,老师有时候需要更新某位同学的成绩。
Input
本题目包含多组测试,请处理到文件结束。 
在每个测试的第一行,有两个正整数 N 和 M ( 0<N<=200000,0<M<5000 ),分别代表学生的数目和操作的数目。 
学生ID编号分别从1编到N。 
第二行包含N个整数,代表这N个学生的初始成绩,其中第i个数代表ID为i的学生的成绩。 
接下来有M行。每一行有一个字符 C (只取'Q'或'U') ,和两个正整数A,B。 
当C为'Q'的时候,表示这是一条询问操作,它询问ID从A到B(包括A,B)的学生当中,成绩最高的是多少。 
当C为'U'的时候,表示这是一条更新操作,要求把ID为A的学生的成绩更改为B。 
Output
对于每一次询问操作,在一行里面输出最高成绩。
Sample Input
5 6
1 2 3 4 5
Q 1 5
U 3 6
Q 3 4
Q 4 5
U 2 9
Q 1 5
Sample Output
5
6
5
9

这是一道线段树的裸题,和HDU1166(敌兵布阵)不一样,这道题最好用线段树,因为数据量较大,而且是区间最值问题,树状数组普遍用于解决区间和问题。具体请看模板:

#include <stdio.h>
#define inf 0x3f3f3f3f
#define Max(x, y) ((x)>(y)?(x):(y))
const int maxn = (1<<20);
struct Node{
	int left;
	int right;
	int value;
}node[maxn];
int father[maxn];
void Build(int i, int l, int r) {
	node[i].left = l;
	node[i].right = r;
	node[i].value = 0;
	if(l == r) {
		father[l] = i;
		return ;
	}
	Build((i<<1), l, (l+r)/2);
	Build((i<<1)+1, 1+(l+r)/2, r);
} 

void UpdateMax(int ri) {
	if(ri == 1) return ;
	int fi = ri/2;
	int a = node[fi<<1].value;
	int b = node[(fi<<1)+1].value;
	node[fi].value = Max(a, b);
	UpdateMax(fi);
}
int mx = -inf;
void Query(int i, int l, int r) {
	if(node[i].left == l && node[i].right == r) {
		mx = Max(mx, node[i].value);
		return ;
	}
	i = (i<<1);
	if(l <= node[i].right) {
		if(r <= node[i].right)
			Query(i, l, r);
		else
			Query(i, l, node[i].right);
	}
	i++;
	if(r >= node[i].left) {
		if(l >= node[i].left) 
			Query(i, l, r);
		else 
			Query(i, node[i].left, r);
	}
	return ;
}
int main() {
	int N, M;
	int l, r, v;
	while(~scanf("%d %d", &N, &M)) {
		Build(1, 1, N);
		for(int i = 1; i <= N; i++) {
			scanf("%d", &v);
			node[father[i]].value = v;
			UpdateMax(father[i]);
		}
		char op[5];
		while(M--) {
			scanf("%s", op);
			if(op[0] == 'Q') {
				scanf("%d %d", &l, &r);
				mx = -inf;
				Query(1, l, r);
				printf("%d\n", mx);
			}
			else {
				scanf("%d %d", &l, &v);
				node[father[l]].value = v;
				UpdateMax(father[l]);
			}
		}
	}
	return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值