有N个人要参加国际象棋比赛,该比赛要进行K场对弈。每个人最多参加两场对弈,最少参加零场对弈。每个人都有一个与其他人不相同的等级(用一个正整数来表示)。
在对弈中,等级高的人必须用黑色的棋子,等级低的人必须用白色的棋子。每个人最多只能用一次黑色的棋子和一次白色的棋子。为增加比赛的可观度,观众希望K场对弈中双方的等级差的总和最小。
比如有7个选手,他们的等级分别是30,17,26,41,19,38,18,要进行3场比赛。最好的安排是选手2对选手7,选手7对选手5,选手6对选手4。此时等级差的总和等于(18-17)+(19-18)+(41-38)=5达到最小。
输入格式
第一行两个正整数N,K
接下来有N行,第i行表示第i-1个人等级。
保证所有输入数据中等级的值小于100000000,1≤K≤N-1
用了两次冒泡排序
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Cs a = new Cs();
Scanner b = new Scanner(System.in);
int x = b.nextInt();
int y = b.nextInt();
int[] k = new int[x];
int i;
int sum=0;
for( i=0;i<x;i++)
k[i] = b.nextInt();
a.mP(x,k);
int[] d = new int[x-1];
for( i=0;i<x-1;i++){
d[i]=k[i+1]-k[i];
}
a.mP(x-1,d);
for(i=0;i<y;i++){
sum+=d[i];
}
System.out.print(sum);
}
}
class Cs{
public static void mP(int n,int[] a){
int s;
int x;
while(n>1){
for(s=0;s<n-1;s++){
if(a[s]>a[s+1]){
x=a[s];
a[s] = a[s+1];
a[s+1] =x;
}
}
n-=1;
}}}