汉诺塔的原理与实现

本文介绍了汉诺塔问题的起源、基本规则,并提供了汉诺塔的伪算法及程序实现。汉诺塔是源自印度的一个益智玩具,挑战者需将64片黄金圆盘从一根柱子按大小顺序移动到另一根柱子,遵循小圆盘不能在大圆盘上方的原则。汉诺塔问题的解决复杂度为2的n次方减1,当n达到64时,移动次数是一个巨大的天文数字。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具。大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着64片黄金圆盘。大梵天命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一次只能移动一个圆盘。

汉诺塔模型图:


汉诺塔伪算法:

if( n > 1 )

{

先把A柱子上的前n-1个盘子从A借助C移动到B

将A柱子上的第n个圆盘直接放到C上

再将B柱子上的n-1个盘子借助A移动到C

}

汉诺塔程序实现

  1 #include <stdio.h>
  2 void hanoi( int n, char start, char middle, char end );
  3 int main()
  4 {
  5     int n = 0;
  6     char ch1 = 'A';
  7     char ch2 = 'B';
  8     char ch3 = 'C';
  9     printf( "input the number of plates;\n" );
 10     scanf( "%d", &n );
 11     hanoi( 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值