预测房价:回归问题
回归问题预测结果为连续值,而不是离散的类别。
波士顿房价数据集
通过20世纪70年代波士顿郊区房价数据集,预测平均房价;数据集的特征包括犯罪率、税率等信息。数据集只有506条记录,划分成404的训练集和102的测试集。每个记录的特征取值范围各不相同。比如,有0~1,1~12以及0~100的等等。
加载数据集
from keras.datasets import boston_housing
(train_data,train_targets),(test_data,test_targets) = boston_housing.load_data()
训练集形状:
>>> train_data.shape
(404, 13)
测试集形状:
>>> test_data.shape
(102, 13)
训练集404条,测试集102条;每条记录13个数值特征。
房价单位为1000美元。
>>> train_targets
[ 15.2, 42.3, 50. ...19.4,19.4,29.1]
房价范围在