Keras深度学习实战——房价预测

本篇博客通过波士顿房价数据集,利用Keras构建神经网络模型预测房价,探讨连续变量预测问题。首先介绍了数据集和模型分析,然后实现神经网络预测,接着展示了如何使用自定义损失函数降低预测误差。最终,平均绝对误差约为0.91,通过自定义损失函数进一步优化后降至0.85。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

0. 前言

我们已经学习了神经网络的基本概念,并且已经使用 Keras 构建神经网络模型用于手写数字的识别。本节中,我们将通过预测房价信息,来了解如何使用神经网络解决连续变量的预测问题。

1. 任务与模型分析

1.1 波士顿房价数据集

在本节中使用 Boston 房价数据集, 该数据集包含美国马萨诸塞州波士顿住房价格的有关信息,是常用的研究连续输出问题的数据集,在 Keras 中包含调用此数据集的方法。数据集中,每个住房的属性信息如下表所示:

属性 描述
CRIM 城镇犯罪率
ZN 住宅用地所占比例
INDUS 城镇中非商业用地占比例
CHAS Charles River 变量,如果住房在河边,则为1,否则为0
NOX 一氧化氮浓度
RM 每间住宅的房间数
评论 25
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

盼小辉丶

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值