Keras深度学习实战——房价预测
0. 前言
我们已经学习了神经网络的基本概念,并且已经使用 Keras
构建神经网络模型用于手写数字的识别。本节中,我们将通过预测房价信息,来了解如何使用神经网络解决连续变量的预测问题。
1. 任务与模型分析
1.1 波士顿房价数据集
在本节中使用 Boston
房价数据集, 该数据集包含美国马萨诸塞州波士顿住房价格的有关信息,是常用的研究连续输出问题的数据集,在 Keras
中包含调用此数据集的方法。数据集中,每个住房的属性信息如下表所示:
属性 | 描述 |
---|---|
CRIM | 城镇犯罪率 |
ZN | 住宅用地所占比例 |
INDUS | 城镇中非商业用地占比例 |
CHAS | Charles River 变量,如果住房在河边,则为1,否则为0 |
NOX | 一氧化氮浓度 |
RM | 每间住宅的房间数 |