超级逼真人脸生成,Stable Diffusion的3个关键技巧

本文介绍了使用StableDiffusion生成逼真人脸的三个关键技巧:基础提示工程、升级至SDXL模型的参数调整和CivitAIRealVisXLV2.0的自定义模型微调。通过实例展示如何优化图像质量和细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

大家好,你是否曾想过,为什么别人可以使用AI图像生成技术生成如此逼真的人脸,而自己的尝试却充满了错误和瑕疵,让人一眼看出是假的。尝试过调整提示和设置,但似乎仍无法与他人的质量相匹配。

本文将带大家了解使用Stable Diffusion生成超逼真人脸的3个关键技巧。首先将介绍提示工程的基础知识,帮助使用基础模型生成图像。接下来,将探讨升级到Stable Diffusion XL模型后,如何通过更多的参数和训练来显著提高图像质量。最后,为大家介绍一种专门用于生成高质量人物肖像而微调的自定义模型。

1. 提示工程

首先,我们将学习如何编写正面和负面的提示来生成逼真的人脸。我们将使用Hugging Face Spaces上提供的Stable Diffusion版本2.1演示。它是免费的,并且可以在不做任何设置的情况下开始使用。

【链接】:hf.co/spaces/stabilityai/stable-diffusion

在创建正面提示时,确保包含图像的所有必要细节和风格。在本例中,我们希望生成一张年轻女子在街上行走的图像。我们将使用一个通用的负面提示,但是可以添加其他关键词以避免图像中的重复错误。

正面提示:“A young woman in her mid-20s, Walking on the streets, Looking directly at the camera, Confident and friendly expression, Casually dressed in modern, stylish attire, Urban street scene background, Bright, sunny day lighting, Vibrant colors”。

负面提示:“disfigured, ugly, bad, immature, cartoon, anime, 3d, painting, b&w, cartoon, painting, illustration, worst quality, low quality”。

图片

图片

我们有了一个良好的开端。图像是准确的,但图像质量可以更好。可以尝试调整提示,但这已经是基础模型能够提供的最好效果了。

2. Stable Diffusion XL

我们将使用Stable Diffusion XL(SDXL)模型生成高质量图像。它通过使用基础模型生成潜在图像,然后使用一个细化器对其进行处理,从而生成详细而精确的图像。

【链接】:hf.co/spaces/hysts/SD-XL

在生成图像之前,我们将向下滚动并打开“Advanced options(高级选项)”。我们将添加一个负面提示,设置种子,并应用细化器以获得最佳的图像质量。

图片

然后,我们将以与之前略有不同的方式编写相同的提示。我们将生成一个年轻的印度女子的图像,而不是普通的年轻女性。

图片

这个结果有了很大的改进。面部特征非常完美。让我们尝试生成其他民族的图像,检查是否存在偏差,并比较结果。

图片

我们得到了逼真的人脸,但所有图片都使用了Instagram滤镜。通常,现实生活中的皮肤并不光滑,而是有粉刺、印记、雀斑和细纹等。

3. CivitAI: RealVisXL V2.0

在这部分,我们将生成带有痕迹和真实肌肤的详细人脸。为此,我们将使用CivitAI的自定义模型(RealVisXL V2.0),该模型经过优化,用于生成高质量肖像。

【链接】:civitai.com/models/139562/realvisxl-v20

可以通过点击“Create(创建)”按钮在线使用该模型;也可以下载它,以在Stable Diffusion WebUI上本地使用。

图片

首先,下载模型并将文件移动到Stable Diffusion WebUI模型目录:C:\WebUI\webui\models\Stable-diffusion。

要在WebUI上显示模型,需要按下刷新按钮,然后选择“realvisxl20…”模型检查点。

图片

我们将从编写相同的正面和负面提示开始,并生成一张高质量的1024X1024图像。

图片

图像看起来非常完美,为了充分利用自定义模型,我们需要更改提示。

图片

新的正面和负面提示可以通过滚动模型页面并点击喜欢的真实图像来获得。CivitAI上的图像具有正面和负面提示以及高级转向功能。

正面提示:“An image of an Indian young woman, focused, decisive, surreal, dynamic pose, ultra highres, sharpness texture, High detail RAW Photo, detailed face, shallow depth of field, sharp eyes, (realistic skin texture:1.2), light skin, dslr, film grain”。

负面提示:“(worst quality, low quality, illustration, 3d, 2d, painting, cartoons, sketch), open mouth”。

图片

我们有了一张具有真实肌肤的印度妇女的详细图像。与基础SDXL模型相比,这是一个改进版本。

图片

我们又生成了三张不同民族的图像,以比较结果。结果非常出色,包含皮肤痕迹、多孔皮肤和准确的特征。

### 使用 Stable Diffusion 进行人脸训练 #### 准备工作 为了使用 Stable Diffusion 模型进行人脸识别或生成人脸图像,准备阶段至关重要。这包括收集高质量的数据集以及设置合适的环境来运行模型。 对于数据集的选择,建议寻找具有多样化特征的人脸图片集合,这些图片应当覆盖不同的角度、表情和光照条件以确保模型能够学习到广泛适用的面部特征[^1]。此外,在构建自定义数据集时,如果希望特定风格的人物面孔得到更好的呈现,则可以在其中加入更多该类别的样本用于微调。 #### 训练过程中的技巧 当涉及到具体的训练方法论方面: - **关键词优化**:通过精心设计提示词(Prompt),可以有效引导神经网络关注于期望生成的内容特性上。例如,针对脸部细节描述性的词语可以帮助提高最终输出的质量。参考 Civitai 平台上的优质项目所使用的提示语句结构是一个不错的起点[^2]。 - **利用现有工具增强效果**:一些辅助软件如 After Detailer 可以为低分辨率输入提供高效的后期处理服务——它能精准定位并强化人像部分,从而获得更加细腻逼真的视觉体验[^3]。 #### 实际操作指南 下面给出一段简单的 Python 脚本片段展示如何加载预训练权重文件并对新采集来的照片实施推理预测: ```python from diffusers import StableDiffusionPipeline import torch model_id = "path_to_your_model" device = "cuda" if torch.cuda.is_available() else "cpu" pipeline = StableDiffusionPipeline.from_pretrained(model_id).to(device) prompt = "A beautiful woman with long hair and blue eyes." image = pipeline(prompt).images[0] image.show() ``` 此段代码实现了从指定路径加载已有的稳定扩散管道实例,并基于给定的文字说明创建一张新的头像画作;最后将其显示出来供查看评估。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

python慕遥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值