时间序列之一:相关术语介绍

差分

定义

在时间序列文献中,通过考虑时间序列相邻两值的变化量所构成的序列,把一个非平稳序列转化为平稳序列,这种思想称为差分化

一阶差分

对一个序列 { r t } \{r_t\} {rt},我们称 c t = r t − r t − 1 c_t=r_t-r_{t-1} ct=rtrt1 r t r_t rt一阶差分序列

二阶差分

对一个序列 { r t } \{r_t\} {rt},对它的一阶差分序列再次进行差分,即 s t = c t − c t − 1 s_t=c_t-c_{t-1} st=ctct1,我们称 s t s_t st r t r_t rt二阶差分序列

平稳性

平稳性是时间序列分析的基础。时间序列的平稳性分为严平稳弱平稳。下面将进行详细介绍。

严平稳

对于一个时间序列 { r t } \{r_t\} {rt},对所有的 t t t,任意正整数 k k k和任意 k k k个正整数 ( t 1 , ⋯   , t k ) (t_1,\cdots,t_k) (t1,,tk) ( r t 1 , ⋯   , r t k ) (r_{t_1},\cdots,r_{t_k}) (rt1,,rtk)的联合分布 ( r t 1 + t , ⋯   , r t k + t ) (r_{t_1+t},\cdots,r_{t_k+t}) (rt1+t,,rtk+t)的联合分布相同的,则称时间序列 { r t } \{r_t\} {rt}严平稳的

换句话说,严平稳性要求时间序列 { r t } \{r_t\} {rt}任意一个子序列 ( r t 1 , ⋯   , r t k ) (r_{t_1},\cdots,r_{t_k}) (rt1,,rtk)的联合分布在时间的平移变换下,保持不变

弱平稳

如果 r t r_t rt的均值 r t r_t rt r t − l r_{t-l} rtl的协方差 不随时间而改变,则称时间序列 { r t } \{r_t\} {rt}弱平稳的,其中 l l l是任意整数。

换句话说,若满足以下2个条件
(a) E r t = μ Er_t=\mu Ert=μ μ \mu μ是一个常数;
(b) C o v ( r t , r t − l ) = γ l Cov(r_t,r_{t-l})=\gamma_l Cov(rt,rtl)=γl γ l \gamma_l γl只依赖于 l l l
则, { r t } \{r_t\} {rt}弱平稳的

在实际中,假定我们有 T T T个数据观测点 { r t ∣ t = 1 , 2 , ⋯   , T } \{r_t | t=1,2,\cdots,T\} {rtt=1,2,,T}弱平稳性意味着数据的时间图显示出 T T T个值 在一个常数水平上下以相同幅度波动。

协方差 γ l = C o v ( r t , r t − l ) \gamma_l=Cov(r_t,r_{t-l}) γl=Cov(rt,rtl)称为 r t r_t rt的间隔为 l l l自协方差。它有两个重要的性质
(a) γ 0 = V a r ( r t ) \gamma_0=Var(r_t) γ0=Var(rt)
(b) γ − l = γ l \gamma_{-l}=\gamma_l γl=γl

第2个性质成立的原因是:
C o v ( r t , r t − ( − l ) ) = C o v ( r t − ( − l ) , r t ) = C o v ( r t + l , r t ) = C o v ( r t 1 , r t 1 − l ) \begin{aligned} Cov(r_t,r_{t-(-l)}) &= Cov(r_{t-(-l)},r_t) \\ &= Cov(r_{t+l},r_t) \\ &= Cov(r_{t_1},r_{{t_1}-l}) \end{aligned} Cov(rt,rt(l))=Cov(rt(l),rt)=Cov(rt+l,rt)=Cov(rt1,rt1l)
其中, t 1 = t + l t_1=t+l t1=t+l

白噪声

若时间序列 { r t } \{r_t\} {rt}是一个具有有限均值有限方差独立同分布随机变量序列,则称为白噪声序列
{ r t } \{r_t\} {rt}还服从均值为0、方差为 σ 2 \sigma^2 σ2的正态分布,则称该序列为高斯白噪声
对于白噪声序列,所有的自相关函数为0

线性时间序列

若时间序列 { r t } \{r_t\} {rt}可以写成如下形式:
r t = μ + ∑ i = 0 ∞ ψ i a t − i r_t = \mu + \sum_{i=0}^{\infty} \psi_i a_{t-i} rt=μ+i=0ψiati
则,称时间序列 { r t } \{r_t\} {rt}线性时间序列。其中:

  • μ \mu μ r t r_t rt的均值;
  • 系数 ψ i \psi_i ψi决定了 r t r_t rt的动态结构,在时间序列文献中,这些系数称为 r t r_t rt ψ − \psi- ψ权重 ψ 0 = 1 \psi_0=1 ψ0=1
  • { a t } \{a_t\} {at}是零均值独立同分布的随机变量序列, a t a_t at表示时间序列在 t t t时刻出现了新的信息,因此,常将 a t a_t at称为时刻 t t t新息扰动

若时间序列 { r t } \{r_t\} {rt}弱平稳的,利用 a t a_t at的独立性,可以得到 r t r_t rt均值方差
E ( r t ) = μ , V a r ( r t ) = σ a 2 ∑ i = 0 ∞ ψ i 2 E(r_t)=\mu,Var(r_t)=\sigma_a^2 \sum_{i=0}^\infty \psi_i^2 E(rt)=μ,Var(rt)=σa2i=0ψi2
其中, σ a 2 \sigma_a^2 σa2 a t a_t at的方差。
因为 V a r ( r t ) < + ∞ Var(r_t)<+\infty Var(rt)<+,所以 ψ i 2 \psi_i^2 ψi2必须是收敛序列,即,当 i → + ∞ i \rightarrow +\infty i+时, ψ i 2 → 0 \psi_i^2 \rightarrow 0 ψi20。相应的,随着 i i i的增大,远处的扰动 a t − i a_{t-i} ati r t r_t rt的影响会逐渐消失。

自协方差

r t r_t rt的间隔为 l l l的自协方差为:
γ l = C o v ( r t , r t − l ) = E [ ( r t − μ ) ( r t − l − μ ) ] = E [ ( ∑ i = 0 ∞ ψ i a t − i ) ( ∑ j = 0 ∞ ψ j a t − l − j ) ] = E ( ∑ i , j = 0 ∞ ψ i ψ j a t − i a t − l − j ) = ∑ j = 0 ∞ ψ j + l ψ j E ( a t − l − j 2 ) = σ a 2 ∑ j = 0 ∞ ψ j ψ j + l \begin{aligned} \gamma_l &= Cov(r_t,r_{t-l}) \\ &= E[(r_t-\mu)(r_{t-l}-\mu)] \\ &=E[(\sum_{i=0}^\infty \psi_i a_{t-i})(\sum_{j=0}^\infty \psi_j a_{t-l-j})] \\ &= E(\sum_{i,j=0}^\infty \psi_i \psi_j a_{t-i} a_{t-l-j}) \\ &= \sum_{j=0}^\infty \psi_{j+l} \psi_j E(a_{t-l-j}^2) \\ &=\sigma_a^2 \sum_{j=0}^\infty \psi_j \psi_{j+l} \end{aligned} γl=Cov(rt,rtl)=E[(rtμ)(rtlμ)]=E[(i=0ψiati)(j=0ψjatlj)]=E(i,j=0ψiψjatiatlj)=j=0ψj+lψjE(atlj2)=σa2j=0ψjψj+l
因此, r t r_t rt自相关系数 ψ − \psi- ψ权重有如下关系:
ρ l = γ l γ 0 = ∑ i = 0 ∞ ψ i ψ i + l 1 + ∑ i = 1 ∞ ψ i 2 , l ≥ 0 \rho_l = \frac{\gamma_l}{\gamma_0}=\frac{\sum_{i=0}^\infty \psi_i \psi_{i+l}}{1+\sum_{i=1}^\infty \psi_i^2},l \geq 0 ρl=γ0γl=1+i=1ψi2i=0ψiψi+l,l0
其中, ψ 0 = 1 \psi_0=1 ψ0=1
线性时间序列模型就是描述 r t r_t rt ψ − \psi- ψ权重的计量经济模型和统计模型。对弱平稳序列来说, i → + ∞ i \rightarrow +\infty i+ ψ i → 0 \psi_i \rightarrow 0 ψi0,从而随着 l l l的增加 ρ l \rho_l ρl收敛到0

参考:
[1] Ruey S. Tsay.金融时间序列分析[D].王远林,王辉,潘家柱 译.

  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

great-wind

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值