python代码报错:ValueError: multiclass format is not supported(已解决)

在深度学习评估中,遇到`ValueError: multiclass format is not supported`错误,发现是由于将多分类标签误用于二分类ROC曲线。解决方法是识别并修正标签,确保为二分类。通过实例代码和原因分析,探讨如何避免此类问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ValueError: multiclass format is not supported

找到报错位置:

def compute_auc(pred, label):
    if isinstance(pred, torch.Tensor):
        pred = pred.cpu().detach().numpy().flatten()
    if isinstance(label, torch.Tensor):
        label = label.cpu().detach().numpy().flatten()
    fpr, tpr, thresholds = metrics.roc_curve(label, pred)#报错位置
    return metrics.auc(fpr, tpr)

报错原因:
在这里插入图片描述
设置断点debug看看这两个输入数据的内容和类型
在这里插入图片描述
报错的原因就是pos_label=None了
在这里插入图片描述
仔细查看label的数值,有0, 1,2,是个多分类,但是roc曲线一般是二分类的,多分类用混淆矩阵来做。我的数据就是二分类,那肯定就是我的label数据有个标签打成了2,改为1就可以了。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值