机器学习之AUC、AUPRC、F1等评价指标的含义

AUC = 0.506031

AUC(area under the curve)是模型评估指标,特别是二分类模型使用的主要离线评测指标之一。

参考博客,AUC值是ROC曲线与x轴围成的面积。AUC的来源路线:混淆矩阵--ROC曲线--AUC

1.混淆矩阵(二分类)
在这里插入图片描述
T P R ( 真 正 例 概 率 ) = T P T P + F N TPR(真正例概率)={ \frac {TP} {TP+FN}} TPR()=TP+FNTP
F P R ( 假 正 例 概 率 ) = F P F P + T N FPR(假正例概率)={ \frac {FP} {FP+TN}} FPR()=FP+TNFP

当阈值(区分类别1,0的值)从1到0慢慢移动,产生很多对 (FPR,TPR)。以FPR为x轴,TFR为y轴的曲线就是ROC曲线,而AUC就是ROC曲线和x轴围成的面积。

在这里插入图片描述
AUC的值表示y=1和y=0的距离,也就是AUC越大,两个数据隔得越开,分类的准确率越大。我的AUC=0.506031,预测的准确率只有50%左右。
在这里插入图片描述
分类器选取阈值不同,分类的结果也会受到影响。使用AUC的话,考虑到了阈值变动,所以评估的效果更好。

AUPRC = 0.616219

PRC曲线是准确率和召回率的点连成的线。AUPRC=PRC曲线和x轴围成的面积。同AUC相同可以作为选取合适阈值的方法。
在这里插入图片描述

Best F1 = 0.780822

F1是分类问题的一个衡量指标。表示准确率(precision)和召回率(recall)的平均数。
F 1 = 2. p r e c i s i o n . r e c a l l p r e c i s i o n + r e c a l l F_1=2.{ \frac {precision.recall} {precision+recall}} F1=2.precision+recallprecision.recall

IoU = 0.216904

IoU=预测框和真实框的交并比:
I o U = ∣ A ⋂ B ∣ ∣ A ⋃ B ∣ IoU={ \frac {|A \bigcap B|} {|A\bigcup B|}} IoU=ABAB
在这里插入图片描述

### 机器学习中的AUC评估指标 #### AUC的概念及其意义 AUC(Area Under Curve)是指ROC曲线下方的面积,这一概念专用于衡量二分类模型的表现[^1]。具体而言,AUC反映了当随机抽取一个正样本和一个负样本时,模型给出前者具有更高预测概率的可能性大小[^2]。 对于不同水平的AUC值所对应的模型性能如下: - **AUC = 1**:意味着这是一个完美的分类器,在任何阈值下均能做出完全正确的预测; - **0.5 < AUC < 1**:表明此分类器优于随机猜测,适当调整决策边界后可获得有价值的预测结果; - **AUC = 0.5**:相当于随机猜测的结果,此时模型不具备实际应用价值; - **AUC < 0.5**:则说明当前模型表现甚至不如随机选择,不过通过反转预测方向反而可以获得较好的效果[^4]。 #### 如何计算AUC? 一种常见的方式是基于梯形法则近似求解积分来估算ROC曲线下的区域面积。另一种方法则是利用Mann-Whitney U统计量直接从数据集中获取两个类别间相对排名差异的信息来进行估计。 以下是Python环境下使用`sklearn.metrics`库函数快速实现AUC计算的例子: ```python from sklearn import metrics import numpy as np # 假设已有真实标签 y_true 和预测得分/概率 y_score y_true = np.array([0, 0, 1, 1]) y_scores = np.array([0.1, 0.4, 0.35, 0.8]) fpr, tpr, thresholds = metrics.roc_curve(y_true, y_scores) auc_value = metrics.auc(fpr, tpr) print("The computed AUC value is:", auc_value) ``` 这种方法不仅简化了编程工作量,而且提高了准确性与效率。 #### AUC与其他评价指标的关系 值得注意的是,虽然AUC广泛应用于各类竞赛以及工业界项目之中,但它并非唯一的选择。其他常用的度量还包括Log Loss、Accuracy、Precision等。其中,Log Loss更适合处理那些输出为连续型概率分布的任务;而像Accuracy这样的离散化后的评判标准,则可能因为人为设定的不同阈值得到截然不同的结论[^3]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值