YOLOv1学习整理

一、 背景介绍

  • 三种强大的物体识别算法——SIFT/SURF、haar特征、广义hough变换的特性对比分析
    https://blog.csdn.net/cy513/article/details/4285579
  • 图像处理之Haar特征
    https://blog.csdn.net/u012507022/article/details/54138299
  • 哈尔小波变换的原理及其实现(Haar)
    https://blog.csdn.net/victory06057231/article/details/6708330
  • DPM(Deformable Part Model)原理详解
    https://blog.csdn.net/qq_14845119/article/details/52625426
  • DPM(Deformable Parts Models)-----目标检测算法理解
    https://blog.csdn.net/qq_22625309/article/details/72493223
  • HOG特征(Histogram of Gradient)学习总结
    https://www.cnblogs.com/wyuzl/p/6792216.html
    • 直方图(histogram)中的bins应如何理解
      https://blog.csdn.net/u011776903/article/details/74637080
    • 多尺度与多分辨率的理解
      https://blog.csdn.net/u013360881/article/details/43452057
    • 什么是图像金字塔
    • https://www.jianshu.com/p/cefbdc2dc5b9*
    • 图像金字塔总结
      https://blog.csdn.net/xiamentingtao/article/details/78596240
  • 尺度不变特征变换匹配算法详解(暂未阅读)
    https://blog.csdn.net/chezhai/article/details/66044054?utm_source=copy
  • 提高目标检测精度的常用方法(含部分代码)
    https://zhuanlan.zhihu.com/p/42946589
  • NMS——非极大值抑制
    https://blog.csdn.net/shuzfan/article/details/52711706
  • 非极大值抑制(Non-Maximum Suppression,NMS)
    https://www.cnblogs.com/makefile/p/nms.html
    代码实现:
    https://blog.csdn.net/williamyi96/article/details/77996167
    https://www.cnblogs.com/makefile/p/nms.html
  • 目标检测中region proposal的作用?
    https://www.zhihu.com/question/265345106

二、YOLO

  • 目标检测|YOLO原理与实现
    https://zhuanlan.zhihu.com/p/32525231
  • YOLO
    https://blog.csdn.net/guoyunfei20/article/details/78744753
  • [目标检测]YOLO原理
    https://www.cnblogs.com/fariver/p/7446921.html
  • YOLO配置文件理解
    https://blog.csdn.net/hrsstudy/article/details/65447947
  • Yolo-实时目标检测算法训练自己的数据集教程
    https://www.jianshu.com/p/c1a009385f59
  • yolo的训练和测试
    https://blog.csdn.net/qq_30401249/article/details/51564871
### YOLOv5学习资源与教程 对于希望深入理解YOLOv5并应用于实际场景中的开发者而言,一系列详尽的学习资料至关重要。为了帮助初学者顺利上手YOLOv5模型,在深度学习领域开展目标检测工作,以下是推荐的学习路径和资源。 #### 安装配置指南 针对初次接触YOLOv5的用户,建议按照官方文档或相关教学视频逐步完成开发环境搭建。具体来说,需掌握CUDA及cuDNN的安装过程[^1],这是运行基于GPU加速的神经网络所必需的基础组件;同时学会利用Anaconda管理Python虚拟环境以及将其集成到PyCharm IDE中进行编码调试。 #### 数据集准备 在着手训练之前,准备好高质量的数据集尤为关键。通常情况下,会将数据划分为训练集(train)、验证集(validation) 和测试集(test),以便于评估模型性能。对于车辆识别任务,可以考虑收集包含各类汽车图像的数据集作为输入素材,并遵循特定格式整理标注文件。 #### 训练流程解析 一旦完成了前期准备工作,则可进入核心环节——模型训练。通过调整超参数设置、优化算法选择等方式提升最终效果。值得注意的是,除了依赖预训练权重外,还可以尝试迁移学习策略来加快收敛速度并改善泛化能力。 ```python from yolov5 import train, val if __name__ == '__main__': # 开始训练 train.run(data='path/to/data.yaml', weights='yolov5s.pt') # 验证模型精度 val.run(weights='runs/train/exp/weights/best.pt', data='path/to/data.yaml') ``` #### 实战案例分享 最后,观看一些成功的实战案例有助于加深理论认知并向实践转化。例如有关交通监控系统的构建实例能够展示如何运用YOLOv5实现高效的实时多目标跟踪功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值