matlab 应该更加完善。相同的仿射矩阵,比如用一个30度的旋转矩阵,对同一图像做旋转出来,显示出来的图像效果如下:
我只要实现旋转操作,显示的结果就是是完美的整幅图像。而python调用opencv的函数进行操作,还需要考虑一些参数,比如旋转中心,另外,在图像旋转后的尺寸上也要加入控制:
M1 = cv2.getRotationMatrix2D((round(h/2),round(w/2)),30,1)
img_tr = cv2.warpAffine(im1, M1, (round(im1.shape[1]*1.0),round(im1.shape[0]*1.0)))
这句代码中我还把原图的行列数倒过来,才能得到相对可以接受的图像,只是,结果仍然不是图像的全貌:
可以看到,opencv需要更加复杂的控制才能得到整体的效果,上面的两句代码调整为:
M1 = cv2.getRotationMatrix2D((round(h/1.3),round(w/3.5)),30,1)
img_tr = cv2.warpAffine(im1, M1, (round(im1.shape[1]*1.7),round(im1.shape[0]*1.3)))
显示结果才是较为完整的旋转效果:
对比证明,matlab可以让工程师更专注于算法的效果,不必考虑边边角角的问题,而opencv的应用则需要考虑更多问题,比如经过变换后的尺寸变化等,这会牵扯一部分精力到实现的细节中去。大部分的工程实现中,算法原理和效果在仿真阶段已经ok了,实现起来却是问题多多,由此可见一斑。