OpenMMLab | 面向多样应用需求,书生·浦语2.5开源超轻量、高性能多种参数版本

本文来源公众号“OpenMMLab”,仅用于学术分享,侵权删,干货满满。

原文链接:面向多样应用需求,书生·浦语2.5开源超轻量、高性能多种参数版本

2024 年 7 月 4 日的 WAIC 科学前沿主论坛上,上海人工智能实验室推出了书生·浦语系列模型的全新版本——InternLM2.5。相较于上一代,InternLM2.5 全面增强了在复杂场景下的推理能力,支持 1M 超长上下文,能自主进行互联网搜索并从上百个网页中完成信息整合。

此前,面向广泛应用场景的轻量级 InternLM2.5-7B 已开源。为适应更多样化应用场景及不同开发者需求,InternLM2.5 再次开源 1.8B、20B 参数版本。

  • InternLM2.5-1.8B :性能优越的超轻量级模型,兼具高质量和高适应灵活性。

  • InternLM2.5-20B :综合性能更为强劲,可以有效支持更加复杂的实用场景。

三种不同尺寸的 InternLM2.5 模型现已全部开源,快速体验链接

书生·浦语系列大模型主页:

https://internlm.intern-ai.org.cn

Hugging Face 主页:

https://huggingface.co/internlm

ModelScope 主页:

https://www.modelscope.cn/organization/Shanghai_AI_Laboratory?tab=model

InternLM2.5 开源链接:

https://github.com/InternLM/InternLM

InternLM2.5 亮点

InternLM2.5 采用了多种数据合成技术并进行了多轮迭代,每次迭代均基于当前领先模型构建的多智能体进行数据筛选、扩增和优化,实现了复杂场景下模型推理能力的全面增强,尤其是在由竞赛问题构成的数学评测集 MATH 上,InternLM2.5-7B 模型成绩相较上一代提升近 1 倍,达到了 64.7% 的准确率。

面向长文档理解和复杂的智能体交互等依赖上文本处理能力的应用场景,为了进一步释放了模型在超长文本应用上的潜力,InternLM2.5 通过在预训练阶段进行 256K Token 长度的高效训练,将上下文长度从上一代模型InternLM2 的 200K 提升到了 1M(约合 120 万汉字)。

为了解决大规模复杂信息的搜索和整合,InternLM2.5 在微调阶段学习了人的思维过程,能够接入团队提出的 MindSearch 多智能体框架,引入了任务规划、任务拆解、大规模网页搜索、多源信息归纳总结等步骤,有效地整合网络信息,能够基于上百个网页的信息进行筛选、浏览和整合。

推理能力领先

通用人工智能的发展依赖强大的推理能力,InternLM2.5 系列聚焦推理能力进行优化,为大模型在复杂场景的应用落地提供了良好的基础。

基于司南 OpenCompass 开源评测框架,研究团队使用统一可复现的评测方法在多个推理能力权威评测集上进行了评测。相比上一代模型,InternLM2.5 在多个推理能力权威评测集上实现了大幅性能提升,特别是在由竞赛问题构成的数学评测集 MATH 上,InternLM2.5 成绩提升近 1 倍,以 20B 参数达到了 64.7% 的准确率,对比其他同量级开源模型,也表现出较强的竞争力。

应用体验

多步复杂推理不在话下

多轮对话意图精准理解

灵活的格式控制和操作

遵循复杂指令

推理和微调快速上手

InternLM2.5 系列模型实现了与下游推理和微调框架的无缝对接,涵盖了上海人工智能实验室自主研发的高性能大语言模型(LLM)微调框架 XTuner、推理框架 LMDeploy,以及在社区中拥有广泛用户基础的 vLLM、Ollama 和 llama.cpp 等等。

以下以 20B 模型为例,分别介绍使用 XTuner 微调模型的方式,以及使用 LMDeploy、vLLM 和 Ollama 搭建模型服务的方法。

XTuner

pip install -U 'xtuner[deepspeed]>=0.1.23'# 单卡 QLoRA 微调,24GB 显存xtuner train internlm2_5_chat_20b_qlora_alpaca_e3 --deepspeed deepspeed_zero1# 8 卡全量微调NPROC_PER_NODE=8 xtuner train internlm2_5_chat_20b_alpaca_e3 --deepspeed deepspeed_zero3

LMDeploy

pip install lmdeploylmdeploy server api_server internlm/internlm2_5-20b-chat --server-port 8000

vLLM​​​​​​​

pip install vllmpython -m vllm.entrypoints.openai.api_server internlm/internlm2_5-20b-chat --dtype auto --port 8000 --trust-remote-code

Ollama​​​​​​​

# 安装 ollamacurl -fsSL https://ollama.com/install.sh | sh# 下载模型ollama pull internlm/internlm2.5:20b-chat# 运行ollama run internlm/internlm2.5:20b-chat# 开启服务(另起一个终端)OLLAMA_HOST=0.0.0.0:8000 ollama serve

LMDeploy、vLLM 和 Ollama 搭建的推理服务,其接口兼容 OpenAI 的服务接口。所以,可以使用 OpenAI 接口访问推理服务,方式如下:​​​​​​​

from openai import OpenAI
client = OpenAI(
    api_key='YOUR_API_KEY', # required but unused
    base_url="http://0.0.0.0:8000/v1"
)
model_name = client.models.list().data[0].id
response = client.chat.completions.create(
    model=model_name,
    messages=[
      {"role": "system", "content": "You are a helpful assistant."},
      {"role": "user", "content": " provide three suggestions about time management"},
  ],
    temperature=0.8,
    top_p=0.8,
    max_tokens=100
)
print(response)

​​​​​​​THE END !

文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。

### 关于书生·浦语大模型 书生·浦语是由上海人工智能实验室推出的大规模预训练语言模型,其设计目标是在多个自然语言处理任务上表现出卓越性能的同时保持高效性和易用性[^1]。该模型不仅支持多种应用场景下的开箱即用功能,还提供了灵活的微调能力以适应特定需求。 #### 模型使用方法 为了使用书生·浦语大模型,可以通过指定 `local_llm_path` 参数加载本地已有的模型文件或者通过提供 Hugging Face 平台上的模型名称来自动下载并加载远程模型。例如可以使用的模型名有 `"internlm/internlm2-chat-7b"` 或者 `"internlm/internlm2-chat-20b"` 等。此外,在实际部署前需确保设置合理的参数如 `local_llm_max_text_length` 来控制输入的最大长度以便优化运行效率和效果。 对于初次使用者来说,准备环境的第一步可能涉及创建目录结构以及复制预先获取到的模型仓库至相应位置的操作命令如下所示: ```bash mkdir -p /root/model/Shanghai_AI_Laboratory && \ cp -r /root/share/temp/model_repos/internlm-chat-7b /root/model/Shanghai_AI_Laboratory/ ``` 上述脚本片段展示了如何构建存储路径并将 internlm-chat-7b 版本的具体实现迁移过去的过程[^2]。 #### 微调与扩展支持 值得一提的是,除了基础的服务外,书生·浦语也兼容其他主流框架内的调整流程和技术方案,比如但不限于 InternLM, Llama, Qwen (通义千问), BaiChuan 及 ChatGLM 这些知名系列的产品线均被纳入考虑范围之内;并且能够很好地融入像 HuggingFace 和 ModelScope 那样的开放生态系统之中去寻找更多可能性[^3]。 另外值得注意的一点在于围绕着这些先进工具所建立起来的标准评估机制同样值得称赞——它由国内权威机构主导制定而成,并得到了国际巨头 Meta 的正式背书成为唯一推荐给用户的本土化考核标准之一,涵盖了上百套测试集合总计五十多万道试题用于全面衡量各项指标表现情况[^4]。 ### 提供的相关资源链接 虽然这里无法直接给出具体的文档地址或安装包下载连接,但是可以根据前面提到的信息自行前往官方网站查询最新版本资料详情页面获取进一步指导说明材料。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值