OpenCV与AI深度学习 | 实战 | YOLO11自定义数据集训练实现缺陷检测 (标注+训练+预测 保姆级教程)

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:实战 | YOLO11自定义数据集训练实现缺陷检测 (标注+训练+预测 保姆级教程)

导  读

    本文将手把手教你用YOLO11训练自己的数据集并实现缺陷检测。

安装环境

YOLO11的介绍和使用这里不再赘述,请参考下面两篇文章即可:

OpenCV与AI深度学习 | YOLOv11来了:将重新定义AI的可能性_opencv ai-CSDN博客

OpenCV与AI深度学习 | YOLO11介绍及五大任务推理演示(目标检测,图像分割,图像分类,姿态检测,带方向目标检测)_yolo11n-pose.pt-CSDN博客

【1】安装torch, torchvision对应版本,这里先下载好,直接安装

pip install torch-1.13.1+cu116-cp38-cp38-win_amd64.whlpip install torchvision-0.14.1+cu116-cp38-cp38-win_amd64.whl

安装好后可以查看是否安装成功,上面安装的gpu版本,查看指令与结果:

import torchprint(torch.__version__)print(torch.cuda

【2】安装ultr

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值