本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
原文链接:实战 | YOLO11自定义数据集训练实现缺陷检测 (标注+训练+预测 保姆级教程)
导 读
本文将手把手教你用YOLO11训练自己的数据集并实现缺陷检测。
安装环境
YOLO11的介绍和使用这里不再赘述,请参考下面两篇文章即可:
OpenCV与AI深度学习 | YOLOv11来了:将重新定义AI的可能性_opencv ai-CSDN博客
OpenCV与AI深度学习 | YOLO11介绍及五大任务推理演示(目标检测,图像分割,图像分类,姿态检测,带方向目标检测)_yolo11n-pose.pt-CSDN博客
【1】安装torch, torchvision对应版本,这里先下载好,直接安装
pip install torch-1.13.1+cu116-cp38-cp38-win_amd64.whl
pip install torchvision-0.14.1+cu116-cp38-cp38-win_amd64.whl
安装好后可以查看是否安装成功,上面安装的gpu版本,查看指令与结果:
import torch
print(torch.__version__)
print(torch.cuda