本文来源公众号“江大白”,仅用于学术分享,侵权删,干货满满。
原文链接:跨界融合创新,基于YOLO11和Ollama的增强OCR文本识别
导读
本文介绍一种通过自定义YOLOv11和EasyOCR,结合Ollama优化OCR效果的方法,解决了传统OCR在复杂图像中的识别难题,显著提高了准确性,为高精度文本提取提供了有效方案。
该项目通过将自定义训练的YOLO11模型与EasyOCR集成并使用LLM优化结果来增强文本识别工作流程,以达到更加完美的文本识别效果。
本文将大型语言模型(LLMs)与计算机视觉结合,通过计算机视觉训练的YOLO11模型定位文本区域,之后通过OCR的文本识别之后,最终大语言模型进行识别结果优化,以获取更加准确的文本识别效果。
为什么我们需要使用OCR的YOLO和Ollama?
传统的OCR(光学字符识别)方法可以很好地从简单的图像中提取文本,但当文本与其他视觉元素交织在一起时,往往会出现问题。通过使用自定义YOLO模型首先检测文本区域等对象,我们可以隔离这些区域进行OCR,从而显著降低噪声并提高准确性。
让我们通过在没有YOLO的图像上运行一个基本的OCR示例来演示这一点,以突出单独使用OCR的挑战:
import easyocr
import cv2
# Initialize EasyOCR
reader = easyocr.Reader(['en'])
# Load the image
image = cv2.imread('book.jpg')
# Run OCR directly
results = reader.readtext(image)
#