本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
原文链接:基于YoloV8的药丸/片剂类型识别
药丸鉴定问题
想象一下这个场景:你手里有一颗药丸,但你不太确定它是什么。也许标签已经磨损,或者您在药柜中发现它松动了。正确识别药物对您的安全和健康至关重要。这就是计算机视觉的用武之地。
药丸识别的工作原理
- 图像捕获:要开始识别过程,您需要使用智能手机或专用设备为药丸拍摄清晰的照片。照明和角度会影响识别的准确性,因此捕获高质量的图像至关重要。
- 图像预处理:获得图像后,将使用计算机视觉算法对其进行预处理。这涉及降噪、对比度增强和图像大小调整等任务,以确保为分析提供最佳输入。
- 特征提取:下一步是从图像中提取特征。特征可能包括药丸的形状、颜色、标记和任何唯一标识符。
- 模式识别:然后,计算机视觉模型分析这些特征,并将它们与已知药物的庞大数据库进行比较。该数据库包含有关各种药丸的外观、标记和特征的信息。
- 分类:根据比较,系统会对药丸进行分类,并为您提供其名称、剂量和其他相关信息。
YOLO 工作流程