本文来源公众号“码科智能”,仅用于学术分享,侵权删,干货满满。
原文链接:谷歌开源「动物物种识别神器」SpeciesNet!6500万张图像训练,秒识2000+物种!
当北极狐的踪迹被AI锁定、盗猎者的车轮被算法拦截,或许这就是科技守护地球的最美姿态。谷歌最新开源AI模型 SpeciesNet,专为野生动物研究打造!
只需一张相机照片,秒识2000+物种!不管是热带雨林中拍摄的树蛙,还是在极地雪原中伪装的北极狐,亦或是雪域高原上孤独漫步的雪豹等都可以精确识别!
全球最大野生动物图像库,超6500万张图像训练、夜间模糊照精准解析,支持商业使用,开发者可以自由部署和改进模型!
全球生态学家目前正面临同一难题:红外相机陷阱(自动触发拍摄的野外相机)每天产生 数百万张图像,但人工筛选需耗时数周!传统困境主要在于:
🌍 热带雨林的树蛙 vs. 极地的北极狐——物种差异大,人工识别易出错。
🌍 夜间拍摄模糊、植被遮挡——肉眼难辨细节。
谷歌联合史密森学会、伦敦动物学会等机构,推出开源AI模型 SpeciesNet,论文及开源代码如下:
Paper:ietresearch.onlinelibrary.wiley.com/doi/10.1049/cvi2.12318
Code:https://github.com/google/cameratrapai
一、涉及到的两个AI模型简介
想象你是一个野生动物研究员,每天收到成千上万张野外相机拍的模糊照片,有动物、空镜头、甚至盗猎者的车。SpeciesNet 就像你的AI助手,用两步流水线帮你快速筛图:
第一步:保安巡逻(MegaDetector 检测器)
-
任务:快速扫一眼照片,回答三个问题:
1. 有没有东西?(是动物/人/车,还是空白?)其中夜间优化,针对模糊、低光照图像,识别准确率提升40%。
2. 在哪里?(用框标出位置)
3. 可能性多大?优先抓“显眼包”:对常见动物(比如鹿)特别敏感,确保快速识别。
第二步:动物专家会诊(SpeciesNet 分类器)
如果“保安”发现可能是动物,照片会交给更专业的AI动物学家:
1. 看细节:放大红框内的区域,分析斑纹、瞳孔等特征。
2. 列名单:支持2000+标签,涵盖从“非洲象”到“猫科动物”的精细分类,支持“物种→科属→大类”多层次分类。
二、两个AI模型如何组合?
SpeciesNet 集成使用一组启发式算法和(可选)地理信息将这两个模型结合起来,将每幅图像分配到一个类别。
1. 不确定就“升级”:如果分不清是“非洲象”还是“亚洲象”,AI会说:“至少是象科!”。
2. 地域常识:如果照片拍于北极,AI绝不会标记“非洲狮”(即使长得像)。
3. 最终底线:如果连“是不是动物”都不确定,直接标记“未知”,交给人类判断。
当调用模型时,对应的输入格式如下,其中纬度和经度仅用于确定 admin1_region:
{
"instances": [
{
"filepath": str => Image filepath
"country": str (optional) => 3-letter country code (ISO 3166-1 Alpha-3) for the location where the image was taken
"admin1_region": str (optional) => First-level administrative division (in ISO 3166-2 format) within the country above
"latitude": float (optional) => Latitude where the image was taken
"longitude": float (optional) => Longitude where the image was taken
},
... => A request can contain multiple instances in the format above.
]
}
SpeciesNet 不仅是技术的赋能,更是一场生态保护民主化运动——通过开源降低监测门槛,让小型保护区、学生团队也能用上有用的AI工具。
THE END !
文章结束,感谢阅读。您的点赞,收藏,评论是我继续更新的动力。大家有推荐的公众号可以评论区留言,共同学习,一起进步。