本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
原文链接:使用YOLO11实现区域内目标跟踪
计算机视觉领域正在迅速发展,尤其是随着生成式人工智能的出现,它正在推动该领域的进一步发展。当我们考虑检测物体时,通常首先想到的是物体检测。但为了获得更好的结果,应该考虑使用物体跟踪。这种方法不仅可以检测物体,还可以随着时间的推移跟踪它们,为每个物体分配唯一的 ID,以获得更准确、更全面的结果。
什么是 TrackZone?
顾名思义,区域内跟踪对象是一种 Ultralytics解决方案,旨在关注帧内的特定区域,以优化跟踪过程。
这种方法仅处理帧的一部分而不是分析整个帧,从而显著提高了跟踪速度。