OpenCV与AI深度学习 | 使用YOLO11实现区域内目标跟踪

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:使用YOLO11实现区域内目标跟踪

计算机视觉领域正在迅速发展,尤其是随着生成式人工智能的出现,它正在推动该领域的进一步发展。当我们考虑检测物体时,通常首先想到的是物体检测。但为了获得更好的结果,应该考虑使用物体跟踪。这种方法不仅可以检测物体,还可以随着时间的推移跟踪它们,为每个物体分配唯一的 ID,以获得更准确、更全面的结果。

什么是 TrackZone?

    顾名思义,区域内跟踪对象是一种 Ultralytics解决方案,旨在关注帧内的特定区域,以优化跟踪过程。

    这种方法仅处理帧的一部分而不是分析整个帧,从而显著提高了跟踪速度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值