kaggle竞赛宝典 | LLM解决时间序列问题——语言模型+时序模型的对齐与融合建模

本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。

原文链接:LLM解决时间序列问题——语言模型+时序模型的对齐与融合建模

直接基于预训练的大语言模型(LLM)解决时间序列问题,是一个最近的重要研究点。之前的研究中,主要尝试用LLM进行zero-shot learning,或者基于LLM的参数进行finetune。随着研究的深入,研究者发现,单独的一个LLM模型,或者单独的用LLM在时序数据上finetune,并不能取得最优的效果。因此除了上述优化之外,另一些工作尝试同时引入LLM构建文本模型和时序模型,并对两种模态的信息进行对齐,提升时序预测效果。

今天就给大家总结几篇最近一段时间,使用语言模型+时序模型进行融合建模的最新工作。

1 基于Attention的文本时序融合

Taming Pre-trained LLMs for Generalised Time Series Forecasting via Cross-modal Knowledge Distillation提出一种文本+时序模型双分支的结构,都从LLM进行参数初始化,并进行跨模态的表征对齐。整体模型包含两个分支,一个分支是文本模型,使用预训练的GPT2;另一个分支是时间序列模型,用来对时间序列数据进行编码,也使

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值