本文来源公众号“kaggle竞赛宝典”,仅用于学术分享,侵权删,干货满满。
原文链接:LLM解决时间序列问题——语言模型+时序模型的对齐与融合建模
直接基于预训练的大语言模型(LLM)解决时间序列问题,是一个最近的重要研究点。之前的研究中,主要尝试用LLM进行zero-shot learning,或者基于LLM的参数进行finetune。随着研究的深入,研究者发现,单独的一个LLM模型,或者单独的用LLM在时序数据上finetune,并不能取得最优的效果。因此除了上述优化之外,另一些工作尝试同时引入LLM构建文本模型和时序模型,并对两种模态的信息进行对齐,提升时序预测效果。
今天就给大家总结几篇最近一段时间,使用语言模型+时序模型进行融合建模的最新工作。
1 基于Attention的文本时序融合
Taming Pre-trained LLMs for Generalised Time Series Forecasting via Cross-modal Knowledge Distillation提出一种文本+时序模型双分支的结构,都从LLM进行参数初始化,并进行跨模态的表征对齐。整体模型包含两个分支,一个分支是文本模型,使用预训练的GPT2;另一个分支是时间序列模型,用来对时间序列数据进行编码,也使