本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。
原文链接:基于PyTorch实现Faster RCNN目标检测
我们将创建一个检测图像中对象的简单模型。我们将使用一个 PyTorch 训练的模型 Faster R-CNN,该模型具有 ResNet-50 主干和特征金字塔网络 (FPN)。该架构因其在对象检测任务中的有效性而受到广泛认可。
torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)
模型细分:
- torchvision.models.detection =>提供预先训练的对象检测模型的 PyTorch 模块。
- fasterrcnn ->指的是 Faster R-CNN(基于区域的卷积神经网络),一种先进的物体检测模型。
- resnet50 ->模型的主干,用于从输入图像中提取特征。它是一个 ResNet-50,一个具有 50 层的卷积神经网络,专为特征提取而设计。
- fpn->对主干网的增强,通过组合主干网多层的特征,允许模型有效地处理不同规模的对象。
- pretrained=True ->加载在COCO(上下文中的常见对象)数据集上预先训练的模型,其中包含 80 个对象类别。
导入需求库
# Import PyTorch core library
import torch
# Import torchvision library for computer vision tasks
import torchvision
# Import transforms module from torchvision for image preprocessing
from torchvision import transforms as T
# Import NumPy for numerical operations and array manipulations
import numpy as np
# Import Python Imaging Library (PIL) for working with images
from PIL import Image
# Import OpenCV for image processing and computer vision tasks
import cv2
# Import cv2_imshow from Google Colab patches to display images in Colab
from google.colab.patches import cv2_imshow
加载模型和评估
# Load the pre-trained Faster R-CNN model with a ResNet-50 backbone and Feature Pyramid Network (FPN) from torchvision
# This model is design