OpenCV与AI深度学习 | 基于PyTorch实现Faster RCNN目标检测

本文来源公众号“OpenCV与AI深度学习”,仅用于学术分享,侵权删,干货满满。

原文链接:基于PyTorch实现Faster RCNN目标检测

我们将创建一个检测图像中对象的简单模型。我们将使用一个 PyTorch 训练的模型 Faster R-CNN,该模型具有 ResNet-50 主干和特征金字塔网络 (FPN)。该架构因其在对象检测任务中的有效性而受到广泛认可。

torchvision.models.detection.fasterrcnn_resnet50_fpn(pretrained=True)

模型细分:

  • torchvision.models.detection =>提供预先训练的对象检测模型的 PyTorch 模块。
  • fasterrcnn ->指的是 Faster R-CNN(基于区域的卷积神经网络),一种先进的物体检测模型。
  • resnet50 ->模型的主干,用于从输入图像中提取特征。它是一个 ResNet-50,一个具有 50 层的卷积神经网络,专为特征提取而设计。
  • fpn->对主干网的增强,通过组合主干网多层的特征,允许模型有效地处理不同规模的对象。
  • pretrained=True ->加载在COCO(上下文中的常见对象)数据集上预先训练的模型,其中包含 80 个对象类别。

导入需求库

# Import PyTorch core library
import torch

# Import torchvision library for computer vision tasks
import torchvision

# Import transforms module from torchvision for image preprocessing
from torchvision import transforms as T

# Import NumPy for numerical operations and array manipulations
import numpy as np

# Import Python Imaging Library (PIL) for working with images
from PIL import Image

# Import OpenCV for image processing and computer vision tasks
import cv2

# Import cv2_imshow from Google Colab patches to display images in Colab
from google.colab.patches import cv2_imshow

加载模型和评估

# Load the pre-trained Faster R-CNN model with a ResNet-50 backbone and Feature Pyramid Network (FPN) from torchvision
# This model is design
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值