通义千问重磅开源Qwen2.5,性能超越Llama

9月19日云栖大会,阿里云CTO周靖人发布通义千问新一代开源模型Qwen2.5,舰模型Qwen2.5-72B性能超越Llama 405B,再登全球开源大模型王座。Qwen2.5全系列涵盖多个尺寸的大语言模型、多模态模型、数学模型和代码模型,每个尺寸都有基础版本、指令跟随版本、量化版本,总计上架100多个模型,刷新业界纪录。

Qwen2.5全系列模型都在18T tokens数据上进行预训练,相比Qwen2,整体性能提升18%以上,拥有更多的知识、更强的编程和数学能力。Qwen2.5-72B模型在MMLU-rudex基准(考察通用知识)、MBPP 基准(考察代码能力)和MATH基准(考察数学能力)的得分高达86.8、88.2、83.1。

Qwen2.5支持高达128K的上下文长度,可生成最多8K内容。模型拥有强大的多语言能力,支持中文、英文、法文、西班牙文、俄文、日文、越南文、阿拉伯文等 29 种以上语言。模型能够丝滑响应多样化的系统提示,实现角色扮演和聊天机器人等任务。在指令跟随、理解结构化数据(如表格)、生成结构化输出(尤其是JSON)等方面Qwen2.5都进步明显。

语言模型方面,Qwen2.5开源了7个尺寸,0.5B、1.5B、3B、7B、14B、32B、72B,它们在同等参数赛道都创造了业界最佳成绩,型号设定充分考虑下游场景的不同需求,3B是适配手机等端侧设备的黄金尺寸;32B是最受开发者期待的“性价比之王”,可在性能和功耗之间获得最佳平衡,Qwen2.5-32B的整体表现超越了Qwen2-72B。

在MMLU-redux等十多个基准测评中,Qwen2.5-72B表现超越Llama3.1-405B

72B是Qwen2.5系列的旗舰模型,其指令跟随版本Qwen2.5-72B-Instruct在MMLU-redux、MATH、MBPP、LiveCodeBench、Arena-Hard、AlignBench、MT-Bench、MultiPL-E等权威测评中表现出色,在多个核心任务上,以不到1/5的参数超越了拥有4050亿巨量参数的Llama3.1-405B,继续稳居“全球最强开源大模型”的位置。

专项模型方面,用于编程的 Qwen2.5-Coder 和用于数学的 Qwen2.5-Math都比前代有了实质性进步。Qwen2.5-Coder 在多达5.5T tokens 的编程相关数据上作了训练,当天开源1.5B和7B版本,未来还将开源32B版本;Qwen2.5-Math支持使用思维链和工具集成推理(TIR) 解决中英双语的数学题,是迄今为止最先进的开源数学模型系列,本次开源了1.5B、7B、72B三个尺寸和一款数学奖励模型Qwen2.5-Math-RM。

多模态模型方面,广受期待的视觉语言模型Qwen2-VL-72B正式开源,Qwen2-VL能识别不同分辨率和长宽比的图片,理解20分钟以上长视频,具备自主操作手机和机器人的视觉智能体能力。日前权威测评LMSYS Chatbot Arena Leaderboard发布最新一期的视觉模型性能测评结果,Qwen2-VL-72B成为全球得分最高的开源模型。

Qwen2-VL-72B在权威测评LMSYS Chatbot Arena Leaderboard成为成为全球得分最高的开源视觉理解模型

自从2023年8月开源以来,通义在全球开源大模型领域后来居上,成为开发者尤其是中国开发者的首选模型。性能上,通义大模型日拱一卒,逐步赶超美国最强开源模型Llama,多次登顶Hugging Face全球大模型榜单;生态上,通义从零起步、开疆拓土,与海内外的开源社区、生态伙伴、开发者共建生态网络,截至2024年9月中旬,通义千问开源模型下载量突破4000万,Qwen系列衍生模型总数超过5万个,成为仅次于Llama的世界级模型群。

HuggingFace数据显示,截至9月中旬Qwen系列原生模型和衍生模型总数超过5万个

<think>好的,我现在需要帮助用户了解如何在本地部署通义Qwen2.5-Omni-7B模型。首先,我需要确认用户的需求,他们可能希望在自己的服务器或个人电脑上运行这个模型,所以必须了解部署的系统要求、步骤以及可能的代码示例。 根据提供的引用内容,这个模型是阿里巴巴开源的,支持多模态,包括文本、图像、音频和视频的处理,并且能够流式生成响应。因此,在部署时需要考虑多模态处理的能力以及硬件资源是否足够。 首先,系统要求方面,用户需要足够的计算资源。因为模型参数是7B规模,通常需要至少16GB的GPU显存,比如使用NVIDIA V100或A10这样的显卡。同时,内存方面建议32GB以上,存储空间需要至少20GB,因为模型文件本身可能较大,加上依赖库和数据集。软件环境方面,需要Python 3.8或更高版本,PyTorch框架,以及Hugging Face的Transformers库,这些都是运行此类模型的基础。 接下来,部署步骤。第一步是环境准备,安装必要的库,比如transformers、torch、sentencepiece等。用户可能需要使用pip安装这些依赖。然后,模型下载,可以通过Hugging Face Hub或者阿里巴巴提供的源获取模型文件。需要确保下载正确的模型版本,可能使用git lfs来下载大文件。 然后是代码示例,用户需要加载模型和分词器。使用AutoModelForCausalLM和AutoTokenizer来自动加载适合的模型结构和分词器。同时,可能需要配置设备映射,比如device_map="auto"让模型自动分配到可用的GPU上。预处理输入部分,可能需要处理多模态数据,比如图像或音频,需要特定的处理器来转换成模型可接受的输入格式。生成输出时,设置参数如max_length、temperature等来控制生成文本的长度和多样性。对于流式输出,可能需要使用generate的streamer参数,但需要查看模型的文档是否支持。 部署注意事项方面,显存优化是关键。如果显存不足,可以考虑量化技术,比如bitsandbytes库的8位或4位量化,或者使用模型并行将模型分散到多个GPU上。多模态处理部分,用户需要确保输入数据经过正确的预处理,比如图像需要resize和归一化,音频可能需要转换为频谱图等。流式响应可能需要结合WebSocket或服务器推送技术,但具体实现可能需要参考模型的API文档。 此外,用户可能需要参考官方文档和GitHub仓库,因为开源项目通常会有详细的安装和使用说明,以及可能的常见题解答。如果遇到题,检查依赖版本是否兼容,比如PyTorch和CUDA的版本是否匹配,transformers库是否更新到支持该模型的版本。 最后,生成相关题需要考虑用户可能进一步的题,比如性能优化方法、处理多模态输入的技巧,或者与其他模型的对比。这样可以帮助用户更全面地理解和应用该模型。</think>### 通义 Qwen2.5-Omni-7B 本地部署指南 #### 一、部署要求 1. **硬件配置** - **GPU**: 推荐 NVIDIA V100/A10/A100 等显存 ≥16GB 的显卡(7B 模型推理需约 14GB 显存) - **内存**: ≥32GB - **存储**: ≥20GB 可用空间(模型文件约 14GB) 2. **软件环境** - Python ≥3.8 - PyTorch ≥2.0(需与 CUDA 版本匹配) - Transformers ≥4.37.0 - 其他依赖:`sentencepiece`, `accelerate`, `bitsandbytes`(量化部署时需安装) #### 二、部署步骤 1. **环境准备** ```bash pip install torch transformers sentencepiece accelerate ``` 2. **模型下载** ```bash git lfs install git clone https://www.modelscope.cn/qwen/Qwen2.5-Omni-7B.git ``` 3. **基础推理代码示例** ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_path = "Qwen2.5-Omni-7B" tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", trust_remote_code=True ) # 文本推理示例 inputs = tokenizer("法国的首都是哪里?", return_tensors="pt").to("cuda") outputs = model.generate(**inputs, max_length=50) print(tokenizer.decode(outputs[0])) ``` #### 三、多模态处理(需额外安装依赖) ```bash pip install pillow soundfile torchaudio ``` ```python # 图像推理示例 from PIL import Image image = Image.open("test_image.jpg").convert("RGB") image_input = model.image_processor(image, return_tensors="pt").to("cuda") text_input = tokenizer("描述这张图片", return_tensors="pt").to("cuda") outputs = model.generate(**dict(text_input, **image_input)) ``` #### 四、显存优化方案 1. **4-bit 量化部署** ```python model = AutoModelForCausalLM.from_pretrained( model_path, device_map="auto", load_in_4bit=True, # 启用4-bit量化 bnb_4bit_compute_dtype=torch.float16 ) ``` 2. **模型并行** ```python model = AutoModelForCausalLM.from_pretrained( model_path, device_map={"": 0}, # 手动分配多GPU max_memory={0:"16GiB", 1:"16GiB"} ) ``` #### 五、流式响应实现 ```python from transformers import TextStreamer streamer = TextStreamer(tokenizer) inputs = tokenizer("请解释量子计算", return_tensors="pt").to("cuda") model.generate(**inputs, streamer=streamer, max_new_tokens=500) ``` #### 六、部署验证 执行以下命令测试模型响应: ```bash python -c "from transformers import pipeline; pipe = pipeline('text-generation', model='Qwen2.5-Omni-7B'); print(pipe('你好,请作一首七言诗', max_length=50)[0]['generated_text'])" ```
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

CSDN资讯

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值