从 PC、互联网、移动互联到现在 AI 大模型时代,技术浪潮迎来了计算、开发、交互三大范式的全面升级和转换。资深数据厂商Cloudera 在 2024 年底发布 2025 年五大科技趋势预测,涉及 AI 智能体、AI 数据、云资源部署、私有模型等方面的重要洞察,值得开发者重点关注。
AI 从爆火走向落地,高质量可信数据与数据管理成为关键
首先,Cloudera 预测 2025 年生成式 AI 的炒作热度将减退,随着 AI 在企业应用中落地,企业必然需要采取务实的 AI 策略,才能从新技术中获得切实效益。预测中举例企业落地 AI 的变化,例如金融服务机构作为生成式 AI 的早期用户,正逐步从基于规则的欺诈检测系统向基于模型的系统转型。
另外,AI 智能体高效优化任务,迅速应对挑战,并实时灵活调整。这将促使企业构建事件驱动型架构,支持 AI 能够及时响应现实事件,从而彻底改变电信和物流等行业。
不过大模型是基于海量数据的训练推理,数据质量是确保 AI 模型成功运行的关键。对此, Cloudera大中华区技术总监刘隶放认为:“拥有庞大、可信数据的企业将在这一趋势中更具竞争优势发,可以利用这些数据获得可操作的洞察。另外由 AI 生产的数据也呈爆发式增长,面对数量庞大且种类繁多的 AI 生成数据,企业如何从中挖掘出有价值的信息,成为亟待解决的问题。” 企业努力从不断增长且种类繁多的 AI 生成数据中获取洞察力,糟糕的数据管理可能会导致企业被信息流淹没,难以有效地利用这些数据资源。
百模大战后,私有大模型将成为企业优选
在企业落地大模型的过程中,Cloudera 预测预计到 2025 年,企业将加快定制 AI 解决方案的步伐,包括 AI 聊天机器人、虚拟助手和专属代理应用等,以满足特定行业或业务的需求。在实际落地中,已经有企业将开源大模型串联,推理效果超过商业大模型。
另外,用于数据和分析的多云及混合能力将成为关键。随着混合环境的逐步扩展,企业的数据分布于本地、大型机、公有云和边缘等多种平台,生成式 AI 模型需要灵活部署到数据所在之处,确保数据和工作负载在业务内的无缝迁移,以产生高效洞察并满足企业需求。
以下是 2025 年五大科技趋势预测详细内容,推荐开发者详细阅读:
预测一:生成式 AI 热度减退,企业将采取更务实的 AI 策略
预计到 2025 年,企业将在生成式 AI 应用上分化为两大阵营。一类是已成功应用生成式 AI 的企业,通过成熟应用实现了显著成效。麦肯锡的数据显示,65%的企业已通过生成式 AI 实现了人力资源成本的有效控制,并在供应链管理中提升了收入。例如,金融服务机构作为生成式 AI 的早期用户,正逐步从基于规则的欺诈检测系统向基于模型的系统转型,推动行业迈向新的发展阶段。生成式 AI 的核心价值在于规模化的知识获取和洞察生成,数据质量是确保 AI 模型成功运行的关键。因此,拥有庞大、可信数据的企业将在这一趋势中更具竞争优势发,可以利用这些数据获得可操作的洞察。
而另一类企业由于缺乏足够的数据储备,难以从生成式 AI 中获得相同效益。因此他们将更倾向于采用传统 AI 或确定性机器学习模型,以提升效率和生产力。Cloudera 预测,企业将不再相信生成式 AI 的大肆炒作,而是专注于制定与企业整体目标一致的技术投资计划。
预测二:AI 智能体(AI Agent)将重塑商业决策
目前,AI 仍无法复制人类做出的所有决策,但明年 Agentic AI 将改变这一现状。生成式 AI 智能体是中国企业持续探索创新行业应用场景并实现投资变现的一种方式。Agentic AI 将推动创新浪潮,改变实时问题解决和决策过程。AI 智能体高效优化任务,迅速应对挑战,并实时灵活调整。这将促使企业构建事件驱动型架构,支持 AI 能够及时响应现实事件,从而彻底改变电信和物流等行业。
Agentic AI 运行复杂模拟的能力,将帮助企业更快地规划、测试和优化,提供实时且可实践的深刻洞察。例如,我们将见证电信网络变得更加智能,AI 能够预测风暴等影响服务的情况,从而主动采取措施,将潜在的服务中断降至最低,同时以意想不到的方式全面提升客户体验。
预测三:“全天候”AI 为数据管理带来新挑战
展望 2025 年,AI 将如同空气无处不在,渗透至个人生活的方方面面。智能手机将成为私人助力,不仅能自动分析电子邮件,还可以根据个人日常习惯和偏好,智能规划后续行动步骤或确认任务的优先级,而且上述处理都将在本地模型中完成,严格保障隐私安全。同时,汽车也会变得更加智能,根据实时交通信息和天气预测,为个人出行预测最佳路线。
随着 AI 全面普及,其生成的数据量将呈现爆炸式增长。随着中国企业对计算能力需求的提高,这一趋势也会为数据管理带来巨大挑战。IDC 预测,到 2026 年 50%的中国企业将与云服务商形成生成式 AI 平台、开发者工具、基础设施的战略合作,这给企业数据和成本的管控治理提出了新的要求。
面对数量庞大且种类繁多的 AI 生成数据,企业如何从中挖掘出有价值的信息,成为亟待解决的问题。企业努力从不断增长且种类繁多的 AI 生成数据中获取洞察力,糟糕的数据管理可能会导致企业被信息流淹没,难以有效地利用这些数据资源。
随着 AI 成为日常运营的标配,新挑战也随之而来。如何确保 AI 提供的洞察信息既相关、又具可操作性,同时满足最基本的安全性和弹性要求,避免其成为无意义的噪音,成为企业亟需攻克的难题。为了充分释放 AI 潜力,企业需要强大的数据管理和多云策略来访问、存储和分析数据,无论数据是在本地、云中还是在边缘,都能提炼获取数据的最大价值。
预测四:单纯的混合云架构已无法满足企业需求
如果说 2024 年是生成式 AI 的试点年,那么在 2025 年企业将致力于推动生成式 AI 的全面生产和规模化部署。这一转变表明,单纯的混合云架构已无法满足企业需求,用于数据和分析的多云及混合能力将成为关键。随着混合环境的逐步扩展,企业的数据分布于本地、大型机、公有云和边缘等多种平台,生成式 AI 模型需要灵活部署到数据所在之处,确保数据和工作负载在业务内的无缝迁移,以产生高效洞察并满足企业需求。
随着大量数据输入至 AI 模型服务中,安全和治理问题也日益凸显。德勤的研究指出,企业采用生成式 AI 的最大障碍是合规风险和治理问题。随着企业开始在本地或公有云中运行私有 AI 模型和应用,混合数据管理平台的需求日益增长。这类平台集成了本地与云数据源,因此具备更高的灵活性且支持更广泛的数据访问,在保障模型端点安全和治理的同时,赋予企业更强的控制力。
预测五:私有大语言模型(LLM)将逐渐取代公有大语言模型,成为企业优选
随着企业 AI 创新将在未来一年成为新的焦点,企业将逐步摒弃公有 LLM,转而选择企业级或私有 LLM,以提供更加符合企业背景的精准洞察。麦肯锡研究显示,目前仅有不到一半(47%)的企业在积极定制和开发其专属模型。预计到 2025 年,企业将加快定制 AI 解决方案的步伐,包括 AI 聊天机器人、虚拟助手和专属代理应用等,以满足特定行业或业务的需求。
越来越多企业将采用企业级 LLM,这将对 GPU 的高性能支持提出更高要求,以比传统 CPU 更快的速度运行,同时确保数据管理系统具有更高的安全性和隐私保护。此外,企业还将增加对检索增强生成(RAG)技术的应用,将通用 LLM 转化为行业或组织专属的数据仓库,从而为现场支持、人力资源和供应链等领域的终端用户提供更加精准、可靠的数据支持。